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Modularization factor

Modularization quality

i: intra-connectivity
j: inter-connectivity
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Multi-objective Formulation

Praditwong et al. (2011)

The MQ can be calculated in terms of MF as

MQ =
n

∑

k=1

MFk (2)

where n is the number of clusters.
The goal of MQ is to limit excessive coupling, but not to eliminate coupling altogether. That is, if we

simply regard coupling as bad, then a ‘perfect’ solution would have a single module cluster containing all
modules. Such a solution would have zero coupling. However, this is not an idea solution because the module
would not have the best possible cohesion. The MQ measure attempts to find a balance between coupling
and cohesion by combining them into a single measurement. The values produced by MQ may be arbitrarily
large, because the value is a sum over the number of clusters present in a solution and so the MQ function
is not a metric. The aim is to reward increased cohesion with a higher MQ score and to punish increased
coupling with a lower MQ score.

In order to handle weighted and unweighted graphs using the same approach, an unweighted graph is
essentially treated as a weighted graph in which all edges have an identical weight.

3 Software Module Clustering as a Multi-objective Problem

Existing approaches to the twin objectives of high cohesion and low coupling have combined these two
objectives into a single objective function, with all of the drawbacks to which the introduction of this
paper referred. Pareto optimality is an alternative approach to handling multiple objectives, that retains
the character of the problem as a multi–objective problem. Using Pareto optimality, it is not possible to
measure ‘how much’ better one solution is than another, merely to determine whether one solution is better
than another. In this way, Pareto optimality combines a set of measurements into a single ordinal scale
metric.

The fitness F (x) of a candidate solution vector, x, is defined in terms of the fitness ascribed to x by each
of the constituent fitness functions, fi but this does not yield a single number for an ‘aggregated fitness’.
Rather, a relationship is defined on candidate solution vectors, that defines when one solution is superior
to another. Under the Pareto interpretation of combined fitness ‘no overall fitness improvement occurs no
matter how much almost all of the fitness functions improve, should they do so at the slightest expense of
any one of their number’ [12]. More formally, the relation is defined as follows:

F (x1) > F (x2)
⇔

∀i.fi(x1) ≥ fi(x2) ∧ ∃i.fi(x1) > fi(x2)

That is, solution x1 is better than another x2 if it is better according to at least one of the individual
fitness functions and no worse according to all of the others. Such a solution x1 is said to ‘dominate’ x2. If
no element of a set X dominates some solution x, then x is said to be non–dominated by X.

A Pareto optimal search yields a set of solutions that are mutually non–dominating and which form an
approximation to the Pareto front. The Pareto front is the set of elements that are not dominated by any
possible element of the solution space. The Pareto front thus denotes the best results achievable; it is the
equivalent to the set of globally optimal points in a single objective search. As with the single objective
formulation, it is not possible to guarantee to locate this globally optimal solution set, merely to attempt to
approximate it as closely as possible.

Each set of objectives leads to a different multi–objective formulation of the problem. In this paper,
two sets of objectives will be considered: The Maximizing Cluster Approach and the Equal-size Cluster
Approach. These are explained below.

3.1 The Maximizing Cluster Approach

The Maximizing Cluster Approach (MCA) uses the following set of objectives:

• the sum of intra-edges of all clusters (maximizing),

• the sum of inter-edges of all clusters (minimizing),
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• the number of clusters (maximizing),

• MQ (maximizing),

• the number of isolated clusters (minimizing).

The inter-edges, the intra-edges, and the MQ are used to measure the quality of the system partitioned.
An isolated cluster is a cluster that contains only one module. Experience and intuition dictate that isolated
single module clusters are uncommon on good modular decompositions and so they are deprecated in the
MCA approach by including the number of isolated clusters and an objective to be minimized.

The aim of the MCA measure is to capture the attributes of a good clustering. That is, it will have max-
imum possible cohesion (maximizing intra-edges) and minimal possible coupling (minimizing inter-edges).
However, it should not put all modules into a single cluster (maximizing the number of clusters) and not
produce a series of isolated clusters (so the number of isolated clusters is minimized).

Since MQ is a well-studied objective function, this is also included as an objective for MCA. This is
one of the attractive aspects of a multi–objective approach; one can always include other candidate single
objectives as one of the multiple objectives to be optimized. The MQ value will tend to increase if there are
more clusters in the system, so it also makes sense to include the number of clusters in the modularization
as an objective. Notice that this objective is in partial conflict with the objective of minimizing the number
of isolated clusters. Furthermore, the relationship between cohesion and coupling is potentially in conflict,
making this a non-trivial multi-objective problem.

To illustrate the MCA approach, consider the MDG in Figure 1. The objective values for MCA are as
follows:

• intra-edges of all clusters (cohesion): 6,

• inter-edges of all clusters (coupling): -6,

• the number of clusters: 3,

• MQ: 1.928571,

• the number of isolated clusters: 0.

The sum of inter-edge of all clusters is multiplied by −2 because each edge is counted twice. The number
of isolated clusters is multiplied by −1 (since it is to be minimized).

3.2 The Equal-size Cluster Approach

The Equal-size Cluster Approach (ECA) does not attempt to optimize for the number of clusters in the
modularization. However, this does not mean that solutions may not emerge that happen to have a large
number of clusters. Rather, the number of clusters is left as a implicit consequence of the other optimisation
objectives, allowing the search process the freedom to choose any number of clusters (large or small) that
best suits the other explicit objectives.

However, the ECA does attempt to produce a modularisation that contains clusters of roughly equal size,
thereby decomposing the software system into roughly equal size modules. This tends to mitigate against
small isolated clusters and also tends to avoid the presence of one larger ‘god class’ like structure.

The objectives of the ECA are as follows:

• the sum of intra-edges of all clusters (maximizing),

• the sum of inter-edges of all clusters (minimizing),

• the number of clusters (maximizing),

• MQ (maximizing),

• the difference between the maximum and minimum number of modules in a cluster (minimizing).

To illustrate the ECA approach, consider again the example MDG in Figure 1. The set of objectives for
ECA are assigned as follows:
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Maximizing Cluster Approach

• the number of clusters (maximizing),
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• the number of isolated clusters (minimizing).
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An isolated cluster is a cluster that contains only one module. Experience and intuition dictate that isolated
single module clusters are uncommon on good modular decompositions and so they are deprecated in the
MCA approach by including the number of isolated clusters and an objective to be minimized.

The aim of the MCA measure is to capture the attributes of a good clustering. That is, it will have max-
imum possible cohesion (maximizing intra-edges) and minimal possible coupling (minimizing inter-edges).
However, it should not put all modules into a single cluster (maximizing the number of clusters) and not
produce a series of isolated clusters (so the number of isolated clusters is minimized).

Since MQ is a well-studied objective function, this is also included as an objective for MCA. This is
one of the attractive aspects of a multi–objective approach; one can always include other candidate single
objectives as one of the multiple objectives to be optimized. The MQ value will tend to increase if there are
more clusters in the system, so it also makes sense to include the number of clusters in the modularization
as an objective. Notice that this objective is in partial conflict with the objective of minimizing the number
of isolated clusters. Furthermore, the relationship between cohesion and coupling is potentially in conflict,
making this a non-trivial multi-objective problem.
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3.2 The Equal-size Cluster Approach

The Equal-size Cluster Approach (ECA) does not attempt to optimize for the number of clusters in the
modularization. However, this does not mean that solutions may not emerge that happen to have a large
number of clusters. Rather, the number of clusters is left as a implicit consequence of the other optimisation
objectives, allowing the search process the freedom to choose any number of clusters (large or small) that
best suits the other explicit objectives.

However, the ECA does attempt to produce a modularisation that contains clusters of roughly equal size,
thereby decomposing the software system into roughly equal size modules. This tends to mitigate against
small isolated clusters and also tends to avoid the presence of one larger ‘god class’ like structure.

The objectives of the ECA are as follows:

• the sum of intra-edges of all clusters (maximizing),

• the sum of inter-edges of all clusters (minimizing),

• the number of clusters (maximizing),

• MQ (maximizing),
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To illustrate the ECA approach, consider again the example MDG in Figure 1. The set of objectives for
ECA are assigned as follows:
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