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Recently, some research has appeared concerning the MVS
portfolio model with fuzzy returns based on credibility measures
or using interval analysis. Within the framework of credibility
theory [29], different fuzzy portfolio selection models have al-
ready been proposed, all of them assuming that uncertainty
on the returns is quantified for every asset. In fact, Huang [30]
solved two fuzzy mean–semivariance portfolio selection models
using fuzzy simulation based on a genetic algorithm, Qin et al.
[31] developed some cross-entropy portfolio models in a fuzzy
environment, Li et al. [32] designed a hybrid algorithm to solve
several portfolio optimization models with fuzzy returns, while
Li et al. [25] also applied a genetic procedure to solve some vari-
ants of the MVS model, assuming that the return on each asset
is a fuzzy variable. On the other hand, Lai et al. [8] considered a
mean-semiabsolute deviation portfolio selection model, assum-
ing that the uncertain returns on assets are intervals, and solved
this problem employing linear interval optimization, while
Giove et al. [33] proposed applying interval analysis to handle
imprecise data in a mean–variance model with a minimax regret
function. Recently, Bhattacharyya et al. [26] considered an MVS
model with interval coefficients and transaction costs for fuzzy
portfolio optimization under a number of trading constraints.

In this paper, we introduce the portfolio selection problem
assuming that the uncertainty of the returns on a given port-
folio can be modeled by means of LR-fuzzy numbers of the
power reference functions family whose moments are evaluated
using their possibility distributions. Note that we approximate
the uncertainty of the return on a given portfolio directly in-
stead of using the combination of uncertainties provided by
the returns on assets that compose the portfolio. In addition,
we work with LR-fuzzy numbers whose reference functions
include both trapezoidal and triangular fuzzy numbers as par-
ticular cases. Thus, we extend the classical fuzzy mean–variance
criteria portfolio selection into the possibilistic mean-downside
risk-skewness (MDRS) model, and then we approach the port-
folio selection problem using multiple objective optimization,
where efficiency is used to characterize the optimal portfolios.
The multi-objective formulation allows the more realistic case to
be considered in which several conflicting goals compete in the
allocation decision; efficient portfolios that are based on the in-
vestor’s preferences can also be selected using a multi-objective
evolutionary algorithm.

This paper is organized as follows. Section II introduces the
basic results of fuzzy sets and criteria to model return and risk
using possibilistic moments of LR-fuzzy numbers, which rep-
resent the uncertainty of future returns on a given portfolio
suitably. The downside risk is quantified by using an LR-fuzzy
number, and a coefficient of the possibilistic skewness of a given
portfolio is also defined. Section III presents the multiple objec-
tive optimization model for portfolio selection, which incorpo-
rates some additional restrictions in order to include practical
trading requirements, expert knowledge, and investor wishes.
Alternative portfolio selection strategies are considered in Sec-
tion IV and then tested on a set of stock data from the Spanish
stock market in Section V, where numerical results that are ob-
tained from the application of our multi-objective approach are
also discussed. Conclusions are given in Section VI.
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Fig. 1. Plot of the membership function of P̃X, which has been built using
the historical returns on a given allocation X .

II. POSSIBILISTIC MOMENTS OF A GIVEN PORTFOLIO

For selecting efficient portfolios, the MVS model requires
using, as usual, historical information on the daily, weekly, or
monthly returns on assets, assuming that historical results have
some predictive ability. However, it seems very difficult for an
individual investor to decide which assets should be selected be-
cause of the uncertainty on future returns; thus, some approach
to model uncertainty is needed. Here, we will work with a fuzzy
set theory approach. A possibility distribution can be viewed as
a membership function of a fuzzy number, which allows both the
analysis of uncertainty and the incorporation of expert knowl-
edge. On the one hand, it analyzes the incomplete information
using possibility models, while on the other hand the experts’
knowledge can be incorporated through the possibility grades
of the data [34]. The main question is about the identification
of possibility distributions, but working with power LR-fuzzy
numbers allows us to consider a large number of membership
functions, including those that are usually used for uncertainty
representation: trapezoidal and triangular fuzzy numbers.

Moreover, the use of power LR-fuzzy numbers allows the
decision maker to represent uncertainty with fuzzy numbers for
which the length of the �-cuts is not linear in �, as happens
when using trapezoidal or triangular fuzzy numbers (see, for
instance, the power LR-fuzzy number plotted in Fig. 1).

Concerning how to quantify return, risk, and skewness before
the investment, that is, to have some knowledge about reasonable
values for possibilistic parameters, investors can use the histor-
ical results of returns on a current portfolio or on his/her ideal
portfolio to obtain some useful information; at that moment, the
returns on a market index can also be used (for instance, IBEX35
in the Spanish stock market). In what follows, we introduce a
suitable approach that is based on possibilistic moments.

In this paper, we consider that a set of risky portfolios is given
and that the uncertainty on their future returns is suitably rep-
resented using LR-fuzzy numbers with reference functions of
the power family. This allows approximation of the possibility
distribution of the returns on a given portfolio instead of aggre-
gating the possibility distributions of the individual assets that
compose it. This approach has also been used in order to build
a fuzzy ranking of risky portfolios [35] and to obtain efficient
portfolios in the risk–return tradeoff [36], when the returns on a
given portfolio are modeled as trapezoidal fuzzy numbers.
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