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ABSTRACT
Partition Crossover is a recombination operator for pseudo-Boolean

optimization with the ability to explore an exponential number of

solutions in linear or square time. It decomposes the objective func-

tion as a sum of subfunctions, each one depending on a different

set of variables. The decomposition makes it possible to select the

best parent for each subfunction independently, and the operator

provides the best out of 2
q
solutions, where q is the number of sub-

functions in the decomposition. These subfunctions are defined over

the connected components of the recombination graph: a subgraph

of the objective function variable interaction graph containing only

the differing variables in the two parents. In this paper, we advance

further and propose a new way to increase the number of linearly

independent subfunctions by analyzing the articulation points of

the recombination graph. These points correspond to variables that,

once flipped, increase the number of connected components. The

presence of a connected component with an articulation point in-

creases the number of explored solutions by a factor of, at least, 4.

We evaluate the new operator using Iterated Local Search combined

with Partition Crossover to solve NK Landscapes and MAX-SAT.
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1 INTRODUCTION
Pseudo-Boolean optimization problems are encoded as binary strings

and produce real numbers as output. The class ofk-bounded pseudo-
Boolean optimization problems are those where the nonlinearity

of the objective function is restricted to at most k interactions. In

these problems, the objective function can be expressed as a sum

of M subfunctions. In Gray-Box optimization [7], the optimizer

is given access to these M subfunctions. The optimizer does not

need to know the specific application, nevertheless useful problem

structure can be extracted from the subfunctions.

Two recent Gray-Box optimization advances have resulted in im-

proved algorithms for solving k-bounded pseudo-Boolean problems.

The first advance is the use of lookahead methods that can identify

improving moves in constant time [2], which makes traditional

random mutation operators unnecessary. The second advance is

the development of Partition Crossover [6], a deterministic greedy

form of recombination that analytically decomposes parents into

recombining components. These recombining components, in turn,

decompose the evaluation function into linearly separable sub-

functions during recombination. If q recombining components are

found, Partition Crossover finds the best of 2
q
offspring in linear

time. Combinations of these two techniques have produced hy-

brid algorithms able to solve adjacent NK landscapes to optimality

on instances with up to one million variables [1]. For random NK

landscapes, optimality cannot be assessed, but the proposed hybrid

algorithms outperform the previous state-of-the-art.

The performance of Partition Crossover is related to the number

of connected components it can find in the recombination graph, a
subgraph of the objective function variable interaction graph con-

taining only the differing variables in the two parents. This paper

proposes an improvement over Partition Crossover, consisting in

flipping the articulation points of the recombination graph. These

points correspond to variables that, once flipped, increase the num-

ber of connected components (and subfunctions). The presence

of an articulation point in a connected component increases the

number of explored solutions by a factor of, at least, 4, compared to

the original Partition Crossover. The improvements of the proposed

operator are evaluated within the recent state-of-the-art Gray-Box

Iterated Local Search combined with Partition Crossover, DRILS

algorithm [1], to solve NK landscapes of up to one million variables

and a set of real-world MAX-SAT instances.

The rest of the paper is organized as follows. Section 2 overviews

relevant background. Section 3 describes the articulation point
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analysis, including the foundations and implementation of the new

Partition Crossover. Section 4 describes the experimental studies

conducted on both NK Landscapes and MAX-SAT instances and

discusses the results obtained. Finally, Section 5 outlines our key

findings and potential future developments.

2 BACKGROUND
A pseudo-Boolean function is a real-valued function of Boolean

variables. A k-bounded pseudo-Boolean function f of N variables

is written as a sum of M subfunctions, each one depending on at

most k variables:

f (x) =
M∑
l=1

fl (xil,1 ,xil,2 , . . . ,xil,k ), (1)

where fl is a subfunction depending on k decision variables and il, j
is the index of the j-th variable in subfunction l . These functions
have been namedMk Landscapes byWhitley et al. [7]; examples are

NK Landscapes (with k = K + 1), MAX-kSAT, and Unconstrained

Quadratic Optimization (with k = 2). In Gray Box Optimization,

the optimizer is given access to the set ofM subfunctions in Equa-

tion (1).

NKQ (‘Quantized’ NK) landscapes [4] can be seen as Mk land-

scapes with one subfunction per variable (M = N ). Each subfunc-

tion fi depends on variable xi and otherK = k−1 variables, and the
codomain of each subfunction is the set {0, 1, . . . ,Q − 1}, where Q
is a positive integer. The subfunctions are randomly generated, but

the dependencies of the variables in each subfunction are generated

according to a given model. Two NK models are widely used. The

adjacent model, in which subfunction fi depends on consecutive

variables (xi , xi+1, . . ., xi+k−1); and the random model, in which

fi depends on xi and other K = k − 1 random variables. Other

models in between can be defined [7], but the adjacent and random

models are extreme as one is very easy to solve and the other is

very hard to solve. Adjacent NKQ landscapes can be optimized in

polynomial time O(N ) using dynamic programming [9]. Random

NKQ landscapes, however, are NP-hard when K = k − 1 ≥ 2.

2.1 Variable Interaction Graph
The variable interaction graph (VIG) [7] is a useful tool that can

be constructed under Gray Box Optimization. It is a graph V IG =
(V ,E), where V is the set of Boolean variables and E is the set of

edges representing all pairs of variables (xi ,x j ) having nonlinear
interactions. These nonlinear interactions can be captured in two

ways. First, assuming that every pair of variables appearing together

in a subfunction have a nonlinear interaction. This is almost always

true for NK landscapes. A second approach is to convert the k-
bounded pseudo-Boolean function into a Walsh polynomial [3],

and then look at every pair of variables to determine if they are

indexed by a Walsh coefficient. This second method is both more

precise and more efficient because the Walsh polynomial can be

constructed in O(N ) time.

An example of the construction of the Variable Interaction Graph

for a random NK landscape with N = 18 variables (numbered from

0 to 17) and K = 2 (k = 3), is given below. We will refer to variables

using numbers, e.g., 9 = x9. The NK landscape sums over the

following 18 subfunctions:

f0(0, 6, 14) f5(5, 4, 2) f10(10, 2, 17) f15(15, 7, 13)

f1(1, 0, 6) f6(6, 10, 13) f11(11, 16, 17) f16(16, 9, 11)

f2(2, 1, 6) f7(7, 12, 15) f12(12, 10, 17) f17(17, 5, 16)

f3(3, 7, 13) f8(8, 3, 6) f13(13, 12, 15)

f4(4, 1, 14) f9(9, 11, 14) f14(14, 4, 16)

From these subfunctions, assume we extract the nonlinear in-

teractions that are shown in Figure 1. In this example, every pair

of variables that appear together in a subfunction has a nonlinear

interaction.
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Figure 1: Sample Variable Interaction Graph (VIG).

2.2 Partition Crossover
The Variable Interaction Graph can be used to implement a de-

terministic recombination operator: Partition Crossover (PX) [6].

When the parents are locally optimal, Partition Crossover acts as a

tunneling algorithm that can move directly from local optima to

local optima with high probability. Partition Crossover is a form of

greedy, deterministic recombination. It takes two solutions (parents),

extracts the variable assignments they share, and uses these shared

variable assignments to decompose both the VIG and the evaluation

function. Considering the example in Figure 1, let the two parents

be

P1 = 000000000000000000 and P2 = 111100011101110110

Therefore, x4 = x5 = x6 = x10 = x14 = x17 = 0 in both parents.

Otherwise, xi = 0 in P1 and xi = 1 in P2 for all of the other bits. Both
parents reside in a hyperplane denoted byh = ∗∗∗∗000∗∗∗0∗∗∗0∗∗0
where ∗ denotes the bits that are different in the two solutions, and

0 marks the positions where they have the same bit values (again,

without loss of generality).

We use the hyperplaneh = ∗∗∗∗000∗∗∗0∗∗∗0∗∗0 to decompose

the VIG in order to produce a Recombination Graph. We remove all

the variables (vertices) that have the same “shared variable assign-

ments” and also remove all edges that are incident on the vertices

corresponding to these bits. This produces the recombination graph

shown in Figure 2.

We can search for connected components of the recombination

graph to identify the recombining components. The decomposition

shown in Figure 2 results in q = 3 recombining components. All

of the variables that appear together in the same recombining

component in the recombination graph must be inherited together



Enhancing Partition Crossover with Articulation Points Analysis GECCO ’18, July 15–19, 2018, Kyoto, Japan

0

1

2

3

7

8

9

11

12

13

15

16

Figure 2: Recombination Graph for the solutions (parents)
P1 = 000000000000000000 and P2 = 111100011101110110.

from one of the two parents. The recombination graph also defines

a reduced evaluation function. This new evaluation function is

linearly separable, and decomposes into q subfunctions defined

over the recombining components.

д(x ′) = a + д1(9, 11, 16) + д2(0, 1, 2) + д3(3, 7, 8, 12, 13, 15),

where д(x ′) = f |h (x
′) and x ′ are restricted to a subspace of the

hyperplaneh that contains the parent strings P1 and P2 as well as all
of their potential offspring under Partition Crossover. The constant

a = f (x ′) −
∑
3

i=1 дi (x
′) depends on the common variables. We can

now see how Partition Crossover works. Every recombination over

q recombining components induces a new separable function д(x ′)
that is defined as:

д(x ′) = a +

q∑
i=1

дi (x
′). (2)

Since д(x ′) is a separable function, Partition Crossover can be

greedy and select which parent yields the best partial solution for

each subfunction дi (x
′). The following Partition Crossover The-

orem was originally proven to hold for the Traveling Salesman

Problem [8]. Tinós et al. [6] have proven the following result also

holds for all k-bounded pseudo-Boolean functions.

Theorem 2.1 (The Partition Crossover Theorem). Given q
linearly separable recombining components with bounded epistasis,
Partition Crossover returns the best of 2q − 2 reachable solutions
distinct from parent solutions P1 and P2 in O(N ) time.

3 ARTICULATION POINTS ANALYSIS
The performance of Partition Crossover is related to the number

of connected components it can find in the recombination graph,

because the operator implicitly explores a number of solutions

which is exponential in the number of connected components. We

propose here an improvement over Partition Crossover, consist-

ing in flipping some variables in one of the parent solutions in

order to break the connected components of the recombination

graph, increasing the number of connected components. A node in

a graph whose removal can break a connected component is called

articulation point [5] (see Figure 3). By finding and evaluating the

articulation points of the recombination graph, our proposed oper-

ator is able to explore an exponentially larger set of solutions with

the same asymptotic cost as the original Partition Crossover, that is,

O(m) wherem is the number of edges in the recombination graph.

The new operator is called Articulation Points Partition Crossover

(APX). In short, for each variable which is an articulation point

of the recombination graph, APX computes the increase in the

objective function of assigning the same value to that variable in

both parents and applying Partition Crossover. This computation

is independently performed for each connected component and all

the contributions are added to give the overall contribution. If there

is no articulation point in the recombination graph or removing an

articulation point does not increase the objective value, the operator

works as the original PX. In the following sections we detail the

theoretical background of the operator.

x2

x1

x3 x4

x0

Figure 3: Example of articulation points. Nodes x3 and x4 are
articulation points of the graph.

3.1 Finding Articulation Points
Articulation points in a graph can be found using an algorithm due

to Tarjan [5]. This algorithm is a slight modification of a Depth First

Search (DFS) exploration of the graph. The algorithm can also be

used to find the connected components required for PX. Let’s call

DFS tree the exploration tree that is obtained after a DFS exploration
of a graph. Then, a node v is an articulation point if any of the

following two conditions hold [5]:

• the node is the root of the DFS tree and it has more than one

child, or

• the node is not the root of the DFS tree and it has a child

subtree with all its edges incident in nodes found not earlier

than v in the DFS tree.

These conditions can be used to implement an algorithm to find

all the articulation points of a graph G(V ,E). The complexity of

this algorithm is: O(|V | + |E |). In the case of a k-bounded pseudo-

Boolean function, |E | is proportional to |V | and the complexity is

O(|V |) = O(N ).

3.2 Evaluating Articulation Points
Removing an articulation point is not always useful, since it implies

flipping a variable in one of the parent solutions and this could

decrease the objective value, yielding an offspring that may not im-

prove the parent solutions. Let x and y denote the parent solutions,

G(V ,E) the recombination graph and C ⊆ V one connected com-

ponent of G. We will denote with 1C a binary string with 1 in the

positions of the variables in C and 0 in the remaining positions (of

variables not in C). We will use F to denote the set of subfunctions

fi whose sum is f . Given a set of variables C , we denote with FC
the subset of subfunctions of F that depend on a variable in C . Let
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us call дC to the sum of subfunctions that depend on a variable
1
in

C , that is, дC =
∑
h∈FC h.

The original Partition Crossover selects the values for the vari-

ables in C from one of the parents (x or y) in such a way that дC
is maximum. If we call z the offspring of PX, this means: дC (z) =
max (дC (x),дC (y)). Thus, it explores two possible values for the

variables inC for each component. For example, if the graph in Fig-

ure 3 is one connected component in the recombination graph of

x = 00000 . . . and y = 11111 . . ., PX takes for this component

the first five variables from x or y, depending on the value of

д{0,1,2,3,4}(x) and д{0,1,2,3,4}(y) (two combinations).

In the case of APX, given a connected component C , with ar-

ticulation points set AP(C), and an articulation point a ∈ AP(C),
it explores the values for the variables in C where a is flipped

in x or y, breaking C into da disjoint connected components. All

the new components can inherit the values of any of the parents

independently. Figure 4 shows a hypothetical connected compo-

nent, C , and highlights one articulation point a. We denote with Ci
(i = 1, 2, . . . ,da ) the connected components in which C is broken

down if a is removed, and we call them connected sub-components.
In the figure, the value of da = 4.

Using our previous example based on Figure 3, there are two

articulation points in the recombination graph (variables 3 and 4).

We can break the graph in variable 3 if we doy3 = 0 or x3 = 1. In any

of these two cases there are two connected sub-components: {1, 2}

and {0, 4}. APX can decide the source (x or y) for the variables in
each connected sub-component independently. Thus, a total of eight

different combinations for variables 0 to 4 are explored and the best

one of them is taken. These combinations are 00000, 00010, 01110,

10011, 11111, 11101, 01100, 10001. Something similar happens when

variable 4 is considered. It breaks the recombination graph in two

connected sub-components, and the eight combinations analyzed

are 00000, 00001, 10001, 01111, 11111, 11110, 01110, 10000. There

are four combinations in common between the two sets (00000,

11111, 01110, 10001), so the total number of combinations analyzed

for the first five variables is 12. This is six times the number of

combinations analyzed by the original PX.

The next lemma provides an expression for the value of дC (z)
after applying APX when C has one single articulation point.

Lemma 3.1. Given two solutions x andy whose offspring by APX is
z, and a connected component C of the recombination graph of x and
y with one single articulation point a ∈ AP(C) joining da connected
sub-components, the value of дC (z) is:

дC (z) = max

t ∈{x,y }

©«
∑

h∈Fa∗

h(t ⊕ 1a ) +

da∑
i=1

∆i (t)
ª®¬ (3)

where ∆i (t) = max(дCi (t ⊕ 1a ),дCi (t ⊕ 1C )) is the maximum value
that the connected sub-component Ci can take if variable a is flipped
(removed from the graph), and Fa∗ = F {a } − ∪

da
i=1FCi is the set of

subfunctions depending on a but not on any other variable in C . The
previous value is the best of 2da+1 combinations for the variables in
C . We denote with ⊕ the bitwise exclusive OR operator for binary
strings.

1
The дC functions defined here are a generalization of the дi functions introduced in

Section 2.2.

Articulation point
Connected sub-component

a

C1

C2

C3

C4

Figure 4: One connected component in the recombination
graph. We can appreciate one of the articulation points in
the center and the connected sub-components joined by the
articulation point.

Proof. APX behaves like PX applied to two situations: 1) vari-

able a is flipped in x and 2) variable a is flipped in y. Then, it takes
the best offspring of these two scenarios and the value of дC (z) is
the maximum value obtained by дC in both of them.

Let us consider case 1). If variable a is flipped in x , for each
connected sub-component Ci we have to take the best of two pos-

sibilities: the variables in Ci take the values of x , and the variables

in Ci take the values of y. The latter coincide with x ⊕ 1C for the

variables in Ci , what allows us to write the contribution of this

sub-component as ∆i (x) = max(дCi (x ⊕ 1a ),дCi (x ⊕ 1C )). These

contributions are summed to be included in the value of дC . Ob-
serve, however, that not all the subfunctions in FC appear in the

union of the FCi . In particular, the subfunctions depending on a but

not on any other variable of C will not be summed in the previous

expression. Thus, we need to explicitly add these subfunctions by

including the term

∑
h∈Fa∗ h(x ⊕ 1a ). This case explores 2

da
com-

binations for the variables of C , since each sub-component Ci take
the decision in an independent way.

Case 2) is exactly the same as case 1), but using y instead of x . It

also explores 2
da

new combinations for the variables of C , and the

sum of the two cases is 2
da+1

. □

The computation of Lemma 3.1 can be done for each articula-

tion point in a connected component C . In general, if r articulation
points are identified in a connected component, there are 2

r
po-

tential decompositions to analyze in that connected component.

This could be inefficient and ineffective in many cases. On the other

hand, we observed in preliminary experiments that the number

of articulation points per connected component tends to be low

(from 1 to 3) and the articulation points form a line with high

probability (see Figure 7). In these situations, many of the 2
r
po-

tential decompositions can provide similar values for the offspring

objective function evaluation. For this reason, APX only allows

one articulation point to be removed per connected component. It
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selects the one providing the maximum value for дC . We defer the

analysis of flipping multiple articulation points in a connected com-

ponent to future work. The next theorem presents the expression

for the objective function of an offspring z of APX and the number

of implicitly explored solutions (from which the offspring is the

best).

Theorem 3.2. Given two solutions x and y whose offspring by
APX is z, the value of f (z) is

f (z) =
∑

C ∈CC(G)

дC (z) +
∑

h∈F−Fx⊕y

h(z) (4)

whereCC(G) is the set of connected components of the recombination
graph of x and y, and F − Fx ⊕y is the set of subfunctions that only
depend on variables with the same value in x and y. The expression
of дC (z) is:

дC (z) = max

a∈AP (C )
t∈{x,y}

©«
∑

h∈Fa∗

h(t ⊕ 1a ) +

da∑
i=1

∆Ca
i ,a (t)

ª®¬ (5)

where ∆Ca
i ,a (t) = max

(
дCa

i
(t ⊕ 1a ),дCa

i
(t ⊕ 1C )

)
is the contribu-

tion of the connected sub-component Ca
i when articulation point a is

removed and Fa∗ = F {a } −∪
da
i=1FCa

i
is the set of subfunctions that de-

pend on a but not on any other variable inC . The number of solutions
that APX implicitly explores is:

E(x ,y) = 2
|CC(G) |

∏
C ∈CC(G)

©«1 − eC +
∑

a∈AP (C)

(
2
da − 1

)ª®¬ , (6)

where eC is the number of edges in the connected component C join-
ing two articulation points. Observe that 2 |CC(G) | is the number of
solutions implicitly explored by the original PX.

Proof. Equation (5) is a consequence of Lemma 3.1 where the

maximum over all the articulation points in a connected component

is taken. Equation (4) is a sum of the contribution to the objective

value of each connected component plus the sum of the evaluation

of the subfunctions that were not considered in the evaluation of

the connected components because they do not depend on any

variable in a connected component (they only depend on variables

with the same values in both parents).

Regarding the number of solutions implicitly explored, the inde-

pendent analysis of each articulation point (Lemma 3.1) provides a

count of 2
da+1

combinations of variables, but we have to subtract

from the count the combinations that are explored in the analysis

of two different articulation points. Two combinations implicitly

explored by the analysis of any articulation point are those of par-

ent solutions x and y. We have to remove these two combinations

from any 2
da+1

count and add 2 to the final sum (to take them into

account). If two articulation points are joined by an edge, there are

two additional common combinations generated by choosing a dif-

ferent parent for the variables at each side of the edge (see Figure 5).

Thus, we have to subtract 2eC to the count of explored combina-

tions, where eC is the number of edges joining two articulation

points in C .
Given two articulation points, if they are not joined by an edge,

then the only two common combinations explored by both are the

parent combinations. Figure 6 helps to see this. Let us suppose that

Articulation points

a1

C3

C4

C2

C1

a2

Figure 5: Two articulation points joined by an edge. The anal-
yses of a1 and a2 explore four common combinations, where
the variables at each side of the edge select one of the two
parents independently.

we are exploring a combination common to the analysis of a1 and
a2. Then, all the variables in the sub-component C3 must be taken

from the same parent, including a2 andv . The analysis of a2 reveals
that a1 and the sub-components C1 and C2 must be taken from

the same parent as variable v in sub-component C3. Thus, all the

variables in the component must be taken from the same parent

and we are exploring one of the parent combinations.

Articulation points

a1

C2

C1

C3

a2
v

Figure 6: Two articulation points not joined by an edge. The
analyses of a1 and a2 explore only two common combina-
tions: the ones found in the parent solutions.

In summary, the number of explored combinations in one con-

nected component C is:∑
a∈AP (C)

(2da+1−2)−2eC+2 = 2

©«1 − eC +
∑

a∈AP (C)

(2da − 1)
ª®¬ . (7)

The product of Equation (7) extended to all the connected com-

ponents of G is Equation (6). □

A more practical (easier to remember) lower bound for the num-

ber of explored solutions is provided in the next corollary.

Corollary 3.3. Given two solutions x and y, a lower bound of
the number of solutions implicitly evaluated in APX is:

E(x ,y) ≥ 2
|CC(G) |

∏
C∈CC (G )
|AP (C )|>0

2(1 + |AP(C)|) (8)
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Proof. According to Eq. (6), each connected component with

articulation points contribute to the count with an additional factor

of

(
1 − eC +

∑
a∈AP (C)(2

da − 1)
)
. We can easily compute a lower

bound of this expression by considering that da ≥ 2 (a direct conse-

quence of the definition of articulation point) and eC ≤ |AP(C)| − 1.
The latter can be explained by the fact that articulation points and

biconnected components (the subgraphs in between) form a tree [5].

The maximum number of edges joining two articulation points is

the number of edges of a tree formed by the articulation points,

and this is |AP(C)| − 1. Thus, we have 2da − 1 ≥ 3 and

©«1 − eC +
∑

a∈AP (C)

(2da − 1)
ª®¬ ≥ (1 − eC + 3|AP(C)|)
≥ (1 − |AP(C)| + 1 + 3|AP(C)|)

≥ 2(1 + |AP(C)|),

what finishes the proof. □

Equation (8) clearly shows that the number of implicitly explored

solutions is much higher than that of PX. In APX, each connected

component with articulation points contributes with an additional

factor to the count of explored solutions of, at least, 2(1 + |AP(C)|).
This means, that any connected component with one articulation

point, increases the count in, at least, a factor of 4 compared to PX.

A component with two articulation points increases the count in,

at least, a factor of 6 compared to PX.

The computation of the best articulation point to remove (if

any) and the best decision for each sub-component in a connected

component of the recombination graph can be done during the DFS

exploration. The computation effort required to do this analysis

only increases the time in a constant factor compared to PX. There

is no change in the asymptotic behaviour of the operator run time,

which isO(N ) for k-bounded pseudo-Boolean functions andO(N 2)

in the general case.

4 EXPERIMENTS
In order to experimentally analyze the performance of APX, we

included it in the Deterministic Recombination and Iterated Local

Search (DRILS) algorithm. DRILS [1] uses a first improving move

hill climber to reach a local optimum. Then, it perturbs the solution

by randomly flipping αN bits, where α is the so-called perturbation
factor. It then applies local search to the new solution to reach

another local optimum and applies Partition Crossover to the last

two local optima, generating a new solution that is improved further

with the hill climber. This process is repeated until a time limit is

reached. The pseudocode is shown in Algorithm 1.

In addition to the original DRILS algorithm, we implement a vari-

ant where the Partition Crossover operator in Line 4 of Algorithm 1

is replaced by APX. This version is called DRILS+APX in the rest

of the paper. In all the runs we set a time limit of 60s (1 minute).

Since the algorithms are stochastic, we performed 10 independent

runs for each instance and algorithm. We used NP-hard problems to

measure the performance of APX: Random NKQ Landscapes with

K ≥ 2 and MAX-SAT.

The computer used for the experiments is a multicore machine

with four Intel Xeon CPU (E5-2670 v3) at 2.3 GHz, a total of 48

Algorithm 1 DRILS

1: current← hillClimber(random());

2: while not stopping condition do
3: next← hillClimber (perturb(current));

4: child← PX(current, next);

5: if child = current or child = next then
6: current← next;

7: else
8: current← hillClimber(child);

9: end if
10: end while

cores, 64 GB of memory and Ubuntu 16.04 LTS. The memory

usage was limited to 3GB during all the executions. The source

code of DRILS and DRILS+APX is available at https://github.com/

jfrchicanog/EfficientHillClimbers.

4.1 APX Statistics
In a first experiment, we compute statistics about the new opera-

tor. In particular, we count the number of connected components

identified in the recombination graph, the number of articulation

points, the number of connected sub-components joined by the

articulation points (da ), and the number of explored solutions in

one recombination. To collect these data, we used random NKQ

Landscapes, where N = 10
5
variables and N = 10

6
variables, K

goes from 2 to 5 andQ = 64. For each combination of the parameter

N and K we generated 10 random instances and run DRILS+APX

10 times. The perturbation factor (α ) in DRILS was set to α = 0.05

in the case K = 2, 3 and α = 0.01 in the case K = 4, 5. These values

were taken from the recommendations in [1].

Table 1 shows averages over all the recombinations appearing

in all the runs for each combination of N and K . In the case of the

number of explored solutions, we compute the binary logarithm

and provide the average. This makes it possible to easily compare

the number of solutions explored by APX and PX, since the number

of components (third column) is the binary logarithm of the number

of solutions explored by PX.

Table 1: APX Statistics.

N K #Comp. #APs da log
2
E(x ,y)

10
5

2 662 687 2.25 1 311

3 503 1 151 2.37 1 105

4 138 196 2.33 286

5 119 218 2.36 254

10
6

2 7 774 10 836 2.28 15 987

3 4 515 21 793 2.35 9 454

4 1 748 6 281 2.38 3 907

5 1 105 7 207 2.34 2 341

We can observe in Table 1 that the number of articulation points

can be similar to the number of components, but it can also be

several times larger, indicating that each connected component can

https://github.com/jfrchicanog/EfficientHillClimbers
https://github.com/jfrchicanog/EfficientHillClimbers
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have several articulation points. The trend in the number of articu-

lation points is not as clear as the number of components. While the

number of components decrease with K , the number of articulation

points can increase or decrease with K . The average degree of the
articulation points is slightly larger than 2 (its minimum value). It is

not common to see high degrees; the maximum value we observed

in the experiments was 13. High values are more probable when K
is high. Regarding the number of explored solutions, we observe

that the logarithm is around two times the number of components.

This means that APX implicitly explores a set of solutions with a

size that is around the square of the number of solutions explored

by PX. According to the data in Table 1, this number is between

2
254 = 10

76
and 2

15 987 = 10
4 813

.

Figure 7 shows the recombination graph for two local optima

during a run of DRILS+APX. For visualization purposes, we chose

one of the smallest recombination graphs we observed in the ex-

periments, for an instance with N = 10
5
variables and K = 2.
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Figure 7: Example of recombination graph during a
DIRLS+APX run for an NK instance with N = 10

5 and K = 2,
showing the connected components and articulation points
(red nodes). The graph contains 858 components and 4 339
nodes, of which 1 825 are articulation points (42%).

4.2 Performance Comparison in NKQ
Landscapes

The goal of the second experiment is to determine when APX is

beneficial when compared to the original PX. Table 2 shows in

the third and fourth columns the number of instances where each

algorithm (DRILS and DRILS+APX) statistically outperforms the

other. The fifth column reports the number of instances where there

is no statistically significant difference between the algorithms. We

used the Mann-Whitney test for the comparison, and marked a

difference as significant when the test reports a p-value below 0.05.

We can observe that DRILS+APX is statistically better than

DRILS in 40 instances, DRILS is better than DRILS+APX in 4 in-

stances and they are both similar in 36 instances.

Figure 8 shows the average fitness over time obtained by DRILS

and DRILS+APX for a concrete NKQ configuration with N = 10
6

Table 2: Number of NKQ instances where any of the algo-
rithms statistically outperforms the other or the two are
similar. The average runtime of one execution of APX and
PX is also shown.

DRILS performance Runtime (ms)

N K APX PX Sim. APX PX

10
5

2 10 0 0 55 46

3 10 0 0 67 73

4 2 0 8 55 52

5 1 1 8 63 52

10
6

2 2 3 5 1 383 970

3 5 0 5 1 785 2 485

4 9 0 1 1 360 1 439

5 1 0 9 1 633 1 559

and K = 3 (average over 100 samples). We can clearly see how

DRILS+APX outperformed DRILS after a few seconds.

Columns sixth and seventh of Table 1 also report the average

runtime of one application of APX and PX. The numbers are in

the same order of magnitude although sometimes PX is faster and

sometimes is slower than APX. Thus, we can claim that the extra

computation does not have a big impact in the runtime.

DRILS

DRILS+APX

0 10 20 30 40 50 60

4.55×107

4.60×107

4.65×107

4.70×107

Time (s)

A
ve
ra
ge
fit
ne
ss

Figure 8: Average fitness over time obtained by DRILS and
DRILS+APX in all the instances and all the runs of NKQ
Landscapes for N = 10

6 and K = 3.

4.3 Performance Comparison in MAX-SAT
We used the weighted and unweighted benchmarks for incomplete

solvers of the MAX-SAT Evaluation 2017
2
. From the 194 instances

in the unweighted benchmark, our implementation worked with

160, running out of memory in the remaining 34 instances. In the

case of the weighted benchmark the implementation worked on 132

out of the 156 instances. This section reports the results obtained

over these 292 MAX-SAT instances. Table 3 reports the number of

instances where each algorithm statistically outperforms the other

2
http://mse17.cs.helsinki.fi/benchmarks.html.

http://mse17.cs.helsinki.fi/benchmarks.html
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(columns three and four). The fifth column reports the number of

instances where there is no statistically significant difference (using

Mann-Whitney with significance level 0.05) between the algorithms.

Three different values for the perturbation factor (α ) were used:
0.10, 0.20 and 0.30.

Table 3: Number of MAX-SAT instances where any of the
algorithms statistically outperforms the other or the two are
similar. The last two columns report the runtime ofAPXand
PX.

DRILS performance Runtime (µs)

Instances α APX PX Sim. APX PX

Unweighted

0.10 78 1 81 463 454

0.20 82 2 75 684 729

0.30 85 2 73 849 1 060

Weighted

0.10 26 19 87 1 425 882

0.20 49 14 69 1 859 1 416

0.30 77 5 50 2 365 1 713

DRILS+APX seems to be better in the unweighted instances than

in the weighted ones, compared to DRILS. Unweighted instances are

expected to have more plateaus than weighted ones, and plateaus

seem to be problematic for the traditional PX. We also observe that

DRILS+APX outperforms DRILS more clearly for higher values of

the perturbation factor. The runtime of APX and PX is similar in

order of magnitude (hundreds of microseconds), but it is higher in

the case of APX for the weighted instances. This is an indication that

the work spent in the analysis of articulation points is not useful

most of the time for these instances. In the unweighted instances,

the runtime of APX is lower than that of PX for a high value of the

perturbation factor.

5 CONCLUSIONS
We propose an improved version of Partition Crossover, Articula-

tion Points Partition Crossover (APX). This new operator increases

the number of explored solutions in an exponential factor with just

a small constant increment in computational time. The core idea

of APX is to flip variables in the parent solutions that are articu-

lation points in the recombination graph. As a result, the number

of connected components increases, and the variables in the new

components can be selected from one of the parents independently

of the other components. Empirical results on both Random NKQ

Landscapes and MAX-SAT provide evidence that the new APX op-

erator increases the performance of a recent state-of-the-art search

Gray-Box algorithm for pseudo-Boolean optimization.

Future work on APX includes a detailed analysis of the possi-

bility of flipping more than one articulation point per connected

component. We have included APX in one particular algorithm

(DRILS), but the operator is independent of the algorithm and can

be included in GAs. Regarding DRILS, we can use the information

of the recombination graph and articulation points to guide the

random walk after finding a local optimum. In particular, this guide

could be essential in plateaus, a scenario for which preliminary

theoretical results on APX provide an encouraging message.
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