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ABSTRACT
There are two important challenges for local search algorithms

when applied to Maximal Satisfiability (MAXSAT). 1) Local search

spends a great deal of time blindly exploring plateaus in the search

space and 2) local search is less effective on application instances.

This second problem may be related to local search’s inability to

exploit problem structure. We propose a genetic recombination

operator to address both of these issues. On problems with well

defined local optima, partition crossover is able to “tunnel" between

local optima to discover new local optima in O(n) time. The PXSAT
algorithm combines partition crossover and local search to produce

a new way to escape plateaus. Partition crossover locally decom-

poses the evaluation function for a given instance into independent

components, and is guaranteed to find the best solution among an

exponential number of candidate solutions in O(n) time. Empiri-

cal results on an extensive set of application instances show that

the proposed framework substantially improves two of best local

search solvers, AdaptG
2
WSAT and Sparrow, on many application

instances. PXSAT combined with AdaptG
2
WSAT is also able to

outperform CCLS, winner of several recent MAXSAT competitions.
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1 INTRODUCTION
Boolean Satisfiability (SAT) is the first problem provenNP-Complete

[9]. Maximum Satisfiability (MAXSAT) is the optimization version
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of SAT. The goal of MAXSAT is to find an assignment that satis-

fies the maximal number of clauses. An efficient way of solving

many optimization problems, such as automated design debugging

[7] and the maximum clique problem [16], is by converting these

problems into MAXSAT and applying a MAXSAT solver. MAXSAT-

based approaches can even outperform specialized solvers in areas

like nonlinear dimensional reduction [6] and Bayesian network

learning [4].

The two major search paradigms for solving MAXSAT instances

are Systematic Search such as branch-and-bound solvers [1] and

local search algorithms [24]. Local search can reliably solve uniform

random instances with one million variables to optimality in recent

SAT competitions
1
. Despite its demonstrated raw power in solving

difficult uniform random instances, local search still suffers from

the following two prominent issues.

(1) Local search solvers frequently encounter a sequence of

states where it is difficult to reduce the number of unsatis-

fied clauses. Moving through these regions, called plateau
moves, usually dominates the running time of local search

solvers [11, 22]. Furthermore, the valuable history of infor-

mation accumulated after high quality solutions are visited

is typically abandoned, which seems unwise.

(2) Local search solvers have poor performance on application

SAT instances. Application SAT instances that have been con-

verted to MAXSAT problems typically have internal struc-

ture. In particular, decomposability focuses on how well the

variable interactions of an application instance can be de-

composed. Decomposability has been extensively studied

and exploited by systematic SAT solvers with success [2, 12].

In constrast, local search solvers ignore structure and the

potential decomposability of application instances.

We present a new framework called PXSAT, based on the recom-

bination operator Partition Crossover (PX) [23]. PXSAT is a form

of hybrid genetic algorithm that combines recombination with

local search. However, unlike most recombination operators, parti-

tion crossover is deterministic in its selection of crossover points,

and partition crossover offers performance guarantees. Partition

crossover is also explicitly designed to be used in combination with

local search.

PX takes as input two solutions which are local optima, or oth-

erwise are good solutions found on a plateau of the search space.

PX is often able to create a “tunnel” that directly moves from two

known locally optimal solutions to arrive at new local optima in

1
http://satcompetition.org/
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O(n) time. Partition Crossover (including the IPT operator) has been

applied successfully on the Traveling Salesman Problem [28–30] as

well as on NK-Landscapes [8]. It has not previously been applied

to MAXSAT. Previous researchers [21, 26] have reported that high

quality local optima typically share partial solutions with optimal

solutions. Using PX in combination with local search algorithms

also has the potential of finding improving moves that tunnel from

one plateau to a better plateau by changing hundreds (or even

thousands) of variables at the same time.

PX can also be used to exploit the decomposability of MAXSAT

application instances. PX fixes what can be considered pseudo

backbone variables (i.e., variable assignments shared among local

optima [20]), to locally decompose the Variable Interaction Graph

(VIG) into q components that are independent from each other. PX

then recombines partial solutions from different components such

that the best solution among all possible 2
q
reachable solutions is

found. This occurs in O(n) time. Previous studies report that many

application instances do have high decomposability and often can

be decomposed into hundreds or thousands of components [5, 31].

These results suggest that PX has the potential to be very useful on

MAXSAT application instances.

While combining local search and PX is in principle simple, doing

so while also controlling execution costs is not trivial. State-of-the-

art local search MAXSAT solvers are highly optimized, so that

each improving move takes only O(1) time [25]. Each application

of PX takes O(n) time. However it seems likely this cost can be

reduced with further research. In the current implementation, PX is

only triggered when there is no improvement after αn local search

moves.

Another related problem in utilizing PX is deciding what can-

didate solutions to recombine. When there are well defined local

optima, this is less of an issue. Selecting which parents to recombine

when the parents reside on a plateau is more difficult. However,

new theoretical finding can guide the design of the PXSAT to avoid

triggering unproductive applications of Partition Crossover.

Empirical results on an extensive set of application instances

shows that combining PX with local search algorithms can yield

substantially better results than local search alone. We improve two

of best local search solvers, AdaptG
2
WSAT and Sparrow. PXSAT

combined with AdaptG
2
WSAT is also able to outperform CCLS,

winner of several recent MAXSAT competitions.

2 VARIABLE INTERACTION AND
TUNNELING

Let f (x) be the evaluation function for an assignment x ∈ Bn ,
where f (x) counts the number of unsatisfied clauses. Consider the

following MAX-3SAT function composed of the following clauses.

Denote this function Example 1:

a: 1 -3 6 l: -6 10 13 q: -11 16 17 v: -15 -7 -13
b: 2 -1 6 m: 8 -18 6 r: 12 -10 17 w: 16 -9 -11
c: -1 2 4 n: 7 -12 -15 s: -13 -12 15 x: 17 -5 -16
d: -4 1 14 o: 9 11 14 t: 14 -4 16 y: -18 -7 13
e: -5 4 2 p: -10 -2 17 u: -9 14 16 z: 3 6 -14

A clause a: 1 -3 6 has a label a and variables 1 -3 6. A positive

variable (e.g. 1) is satisfied by an assignment of True. A negated

variable (e.g. -3) is satisfied by a False assignment. Each clause is in
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Figure 1: An illustration of the VIG.

Conjunctive Normal Form; at least one literal must be satisfied for

the clause to be satisfied. The goal is to maximize the number of

satisfied clauses. Letm denote the number of clauses, and n denote

the number of variables.

From these clauses, we can extract the nonlinear interactions

between the variables. An exact way to compute the nonlinear

interactions is to use a discrete Fourier transform to generate a

discrete Fourier polynomial; this can be done inO(n) time assuming

m = O(n). We can be less exact and assume that if two variables

appear together in a single clause, there is a nonlinearity between

those variables. The true nonlinear interactions must be a subset of

this set. This leads to the following definition:

Definition 2.1 (Variable Interaction Graph (VIG)). A variable in-

teraction graph has a set of vertices which are the variables of a

MAXSAT instance. If two variables, xi and x j appear together in a

clause, there is an edge ei, j in the VIG.

The VIG has at most 3m = O(n) edges for MAX-3SAT. Figure 1

presents the VIG for Example 1. Assume we have two candidate

solutions P1 and P2 to Example 1 that have been found by local

search, where neither solution can be improved by a single bit flip.

P1 = 00000 00000 00000 000

P2 = 11100 01110 11101 101

P1 satisfies all of the clauses except clause o but flipping bits 9 or

11 or 14 causes clauses q or u or z respectively to be unsatisfied. P2

satisfies all of the clauses except clause v but flipping bits 15 or 13

or 7 causes clauses s or y or m to be unsatisfied.

Clearly, x4 = x5 = x6 = x10 = x14 = x17 = 0 in P1 and P2. For

all other bits, xi = 0 in P1, and xi = 1 in P2. The two solutions are

contained in the hyperplane ***000***0***0**0* where ∗ denotes
the bits that are different in the two solutions, and 0 marks the

positions where variables share the same assignment.

We use the hyperplane ***000***0***0**0* to decompose the

VIG to generate a recombination graph. We remove all of the vari-

ables (vertices) that have the same assignments and remove the

edges incident on the removed vertices. The Recombination Graph
is shown in Figure 2.

The recombination graph breaks the VIG into connected sub-

graphs, which we will define as recombining components. In Figure 2
there are q = 3 recombining components. Variables that are con-

nected in the recombination graph represent complementary partial

solutions. The recombination graph also decomposes the evalua-

tion function f (x) into linearly separable subfunctions. Thus, in
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Figure 2: The Recombination Graph with three separable recom-
bining components for the parent P1 = 00000 00000 00000 000 and
P2 = 11100 01110 11101 101.

Example 1 we can define a new subfunction д(x ′).

д(x ′) = a + д1(x9,x11,x16) + д2(x1,x2,x3)

+ д3(x7,x8,x12,x13,x15,x18)

where a is a constant and д(x ′) = f (x) but where the domain

of function д(x ′) is restricted to the largest hyperplane subspace

containing strings P1 and P2. This means that x ′ samples only a

proper subset of the variables represented by x ; the other variables
that are shared in common by P1 and P2 have been fixed in value.

Since clause o is unsatisfied by P1 and clause v is unsatisfied by

P2, and because o and v are in different components of recombina-

tion graph in Figure 2, the offspring (e.g., 00000 00010 10000 100) is

guaranteed to improve upon both parents. In this case, PX instantly

jumps to the global optimum with all clauses satisfied.

In general the recombination graph induces a new evaluation

function

д(x ′) = a +

q∑
i=1

дi (x
′) = f (x)

where each subfunction дi (x
′) evaluates one connected recom-

bining component of the recombination graph. Let Gi denote the

recombining component corresponding to subfunction дi (x
′). Note

that if there are 2 parents and q recombining components, these

partially solutions can be recombined in 2
q
ways; we refer to this

as the set of reachable solutions. We can now prove the following

result:

Theorem 2.2 (PX Theorem). Given a recombination graph with
q recombining components, Partition Crossover (PX) returns the best
of 2

q reachable solutions in O(n) time.

Proof. Because the function д(x ′) is linearly separable, we can

greedily select the best partial solution from P1 and P2 indepen-

dently for each subfunction дi . The q greedy choices yields the best

of 2
q
reachable solutions. □

Of course, an improvement only occurs if P1 and P2 have re-
combining components that also have different evaluations, even

when f (P1) = f (P2). But we can also say something more about

the potential offspring that are generated by Partition Crossover.

First consider the simple case where there are only 2 recombining

components, and thus there are only 2 potential offspring that are

different from the parents. Assume the parents are P1 and P2 and

two potential are C1 and C2. Under the cost function f (x) [27]:

f (P1) + f (P2) = f (C1) + f (C2)

If there are only 2 recombining components, the offspring can in-

herit from either P2 or from P2 in each components. This generates

2
2
combinations, but 2 of the 4 are the original parents. The other

two are offspring C1 and C2. Thus, by definition: f (P1) + f (P2) =

f (C1) + f (C2).

Next, in this paper we generalized this idea. As already noted,

given q recombining components the number of potential offspring

produced by recombining parents P1 and P2 is 2
q
. Using simple

counting arguments that average over all possible offspring yields

the following result:

f (P1)

2

+
f (P2)

2

=
1

2
q

2
q∑

i=1

f (Ci )

This result has special significant for MAXSAT. Assume that

f (P1) = f (P2). However, if any of the offspring represents a dis-

improving move, there must also exist an offspring that represents

an improving move. This makes Partition Crossover very different

than local search, where the discovery of a disapproving move says

nothing about the existence of an improving move.

The Partition Crossover operator is also highly exploitive in

nature: crossover retains the best combination of “alleles" already

present in the parents, but Partition Crossover can never generate

new “alleles" that are not found in the parents.

2.1 Tunneling between Local Optima
Tunneling methods in the form of PX are able to take two solutions

as input that are locally optimal, and return a new solution that is

also a local optimum in д(x ′). Thus, tunneling is able to do some-

thing that local search cannot: move directly from known local

optima to new local optima in one step.

A Partition Crossover operator (e.g., IPT crossover) has already

been developed for the Traveling Salesman Problem (TSP) and is

a critical part of the Lin Kernigham Helsgaun (LKH) algorithm

[30], the best iterated local search algorithm for the TSP. Tunneling

methods have also been developed for general k-bounded pseudo-

Boolean optimization problems [23].

Because MAX-kSAT problems are characterized by numerous

large plateaus, it is more difficult to characterize the “tunneling”

behavior of PX on MAX-kSAT. But for Weighted MAX-kSAT (and

k-bounded pseudo-Boolean optimization problems in general) we

can prove the following result.

Theorem 2.3. Assume that solutions P1 and P2 are well defined
local optima on a Weighted MAX-kSAT instance. All of the reachable
solutions are also local optima under function д(x ′).

Proof. Assume bit xb is referenced by both f (x) and д(x ′). Be-
cause д(x ′) is linearly separable xb appears in only one subfunction

дi (x
′). Because дi (x

′) is a linearly separable subfunction relative to

P1 and P2, if f (x) is locally optimal for P1 and P2 the subfunction

дi (x
′) must also be locally optimal for P1 and P2. It follows that all

offspring that inherit an assignment from P1 or P2 for дi (x
′) are

also locally optimal under д(x ′). □

To be clear, a solution that is locally optimal in д(x ′) might not

be locally optimal in f (x), but if a solution is not locally optimal

in f (x) the improving move can only result from flipping a bit
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time 
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Figure 3: This figure illustrates how PX is combined with local
search. The dashed line tracks changes in f (x ). When a plateau is
reached, a solution P1 is captured. After αn moves with no improv-
ing moves, another solution P2 is selected, and PX is used to recom-
bine P1 and P2.

assignment shared in common by P1 and P2.We have examined

hundreds of k-bounded pseudo-Boolean functions, and empirically

we find that the best of the 2
q
reachable solutions is also a local

optimum in f (x) more than 80 percent of the time.

Since the proof of Theorem 2.3 is expressed in terms of improving

moves, we also automatically get the following result for free.

Theorem 2.4. Assume that solutions P1 and P2 are on plateaus
such that there is no improving move from solution P1 or from P2.
There are no improving moves from any of the reachable offspring
solutions under the function д(x ′).

2.2 The Cost of PX compared to Local Search
Modern MAXSAT local search algorithms are able to find Hamming

distance 1 improving moves in O(1) time using techniques like

gradient-based promising variable selection [15, 25]. This means

that PX should only be applied when local search has difficulty

finding an improving move, which typically means that search has

become stuck on a plateau. PX has the potential to find tunneling

moves to an improved solution on a better plateau.

A illustration of how PX is combined with local search appears

in Figure 3. When a new plateau is reach, a solution P1 is recorded.

If an improving move is not found after αn moves, another solution

on the plateau, P2 is selected. Note there are αn moves separating

P1 and P2, which also implies that local search cannot easily escape

from the plateau. P1 is then recombined with P2.

We can efficiently evaluate recombining components of the re-

combination graph using the Score vector used by all modern local

search algorithms to track improving moves (i.e., the Score vector
tracks moves that “makes" clauses true and “breaks" clauses so that

they are not longer true). Assume there are candidate solutions P1

and P2 which decomposes the VIG into q partitions. Assume the

current Score vector is defined related to the current solution P2.

Note that the solution P1 and P2 have complementary assignments

for each subfunction дi (x
′). To evaluate the recombining compo-

nent Gi (i ∈ [1,q]), flip all of the bits in Gi , updating the Score
vector after each bit flip. The sum of the changes provided by the

Score vector is equal to the change in evaluation between дi (P2)

and дi (P1). While this reduces the runtime, this cost of PX is still

O(n).

Algorithm 1 PXSAT: A Generic Framework based on PX

1: x ← rand(); ▷ random initialization

2: xbest ← x ; ebest ← f (x); i ← 0; ibest ← 0;

3: while termination condition not met do
4: x ← LS(x); ▷ one bit flip by local search

5: if f (x) < ebest then ▷ improvement

6: xbest ← x ; ebest ← f (x); ibest ← i;
7: else if i > ibest + αn then ▷ stagnation

8: x ← px(x ,xbest );
9: ▷ reset regardless of outcome of PX

10: xbest ← x ; ebest ← f (x); ibest ← i;

11: i ← i + 1

The following theorem addresses the trade-off in applying PX

or doing θ (n) steps of local search.

Theorem 2.5. Given θ (n) time, where n is the number of variables,
local search with gradient-based variable selection implicitly checks
θ (n2) candidate solution, while PX implicitly checks θ (2q ) candidate
solutions, where q is the number of components in the recombination
graphs.

Proof. In local search with gradient-based promising variable

selection, an improving move among n neighbor solutions can

be discovered in θ (1) time. Given θ (n) time, θ (n) such moves can

be performed. A total of θ (n2) candidate solutions can thus be

implicitly checked given θ (n) explicit evaluations. For PX, only
θ (1) crossovers can be performed in θ (n) time, so that a total of

θ (2q ) candidate solutions are implicitly checked given θ (n) explicit
evaluations. □

3 PXSAT
We will use our theoretical results to motivate the use of PX for

MAXSAT. We are not replacing local search with PX. Instead, we

present a general framework that combines PX with local search.

We design the framework with simplicity in mind, so that the

framework can be incorporated into any existing local search solver.

With the introduction of PX, some of computational resources

previously spent on local search inevitably needs to be allocated for

PX. Using PX offers new opportunities of exploring a very different

set of candidate solutions on plateaus that are difficult to escape by

local search.

We now present PXSAT framework in Algorithm 1. xbest keeps
tracks of the best candidate solution within a variable-length in-

terval. At initialization, randomly generate the current solution x .
xbest is set to x . When local improves and updates xbest in less

than αn steps, the interval keeps expanding. Otherwise, when there

is no improvement over xbest for αn steps, a stagnation is detected.

In case of stagnation, apply PX to xbest and x , reset xbest to x ,
which starts a new interval.

4 EMPIRICAL RESULTS
PXSAT is first used to improve two of best performing local search

SAT solvers on application instances, AdaptG
2
WSAT [17] and Spar-

row [3]. This shows relative performance improvement achieved by

incorporating PXSAT into existing solvers. We then demonstrate
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Base Solver AdaptG
2
WSAT Sparrow

#No Diff (No PX) 13 11

#No Diff (PX Ties) 4 2

# Better ∆sol (Total) 63 73

# Better ∆sol (Sig) 38 40

# Worse ∆sol (Total) 8 6

# Worse ∆sol (Sig) 2 0

# Faster ∆time (Total) 11 8

# Slower ∆time (Total) 3 2

Table 1: Comparing PXSAT versions with the original local search
solvers. “#No Diff (No PX)”: number of instances where PX is never
triggered. “#No Diff (PX Ties)”: number of instances where PX is
triggered and average solving time and average solution quality are
tied between the original solver and its PXSAT version. “# Better
(Worse) ∆sol”: number of instances where the PXSAT version has
better (worse) average solution quality. “# Faster (Slower) ∆t ime”:
number of instances where the PXSAT version has faster (slower)
average solving time.

that the improvement achieved by PXSAT is significant by compar-

ing AdaptG
2
WSAT-PX and Sparrow-PX with CCLS [18], a state-of-

the-art local search solver designed specifically for MAXSAT. This

exhibits the absolute performance of PXSAT. Empirical results show

that the performance of a 10-year-old SAT solver AdaptG
2
WSAT

can be lifted by PXSAT so that it even outperforms the state-of-the-

art MAXSAT solver on every instance tested. We also establish a

theoretical model for predicting and the success of PXSAT.

Setup: The benchmark set is constructed as follows. From 150

satisfiable instances from the crafted track and 150 satisfiable in-

stances from the industrial track in the SAT competition 2014, sam-

ple three instances (smallest/median/largest in size in terms of

number of variables) from each class if there are more than three,

otherwise select all instances. We only selected the satisfiable in-

stances so that the optimum is known to have a zero evaluation.

We excluded nine extremely large instances due the memory limits

of the machines available for these experiments. In all, we used 102

instances; these instances were preprocessed offline by SatELite

[10]. We also evaluated PXSAT on crafted instances and indus-

trial instances from MAXSAT Evaluation 2016
2
. However, these

instances were not challenging enough; local search is often able

to find an improving solution within αn iterations. As long as local

search continues to find improving moves, Partition Crossover is

not triggered.

The parameter α in PXSAT was fixed to be 1, 2, 4, 8 and 16 on

each instance, and the best performance among the five settings are

used for comparison with the original SAT solvers. The parameter α
was tuned by running some preliminary examples of recombination

for that instance. In approximately half of the cases (48), α = 1 was

best.

4.1 Improving State-of-the-Art Local Search
SAT Solvers

We combine PXSAT with AdaptG
2
WSAT [17] and Sparrow [3].

AdaptG
2
WSAT has been found to be one of the best performing

local search solvers on application instances [14]. Sparrow, on the

other hand, performed the best among all local search solvers in

both crafted SAT track and application SAT track in SAT Competi-

tion
3
2014. Both solvers are available from the UBCSAT

4
collection

[24]. The average of the best solutions found over 10 trials, each of

5000 seconds, was compared.

Table 1 summarizes the impact of PXSAT when incorporated

into AdaptG
2
WSAT and Sparrow. There are 11 instances for Spar-

row and 13 instances for AdaptG
2
WSAT that are easy enough to

solve without any stagnation of over αn iterations. Thus in these

case, PX is not triggered. On the remaining instances, PXSAT has

a strong positive influence on both average solution quality and

average solving time. Mann-Whitney test [19] is employed to test

whether the differences in averages are statistically significant, as-

suming a significance level of 0.05. We use percentage improvement
to measure the improvements. It is defined as

∆ = (oriд − pxsat)/oriд × 100%, (1)

where oriд is the metric (∆sol denotes solution quality and ∆time
denotes solving time) for the base solver and pxsat is for its PXSAT
version.

PXSAT improves AdaptG
2
WSAT on 63 instances in terms of

average solution quality; it is worse on only 8 instances. The per-

centage improvement in average solution quality is 22.4%. The im-

provements in solution quality achieved by PXSAT on 38 instances

are statistically significant. AdaptG
2
WSAT-PX is only significantly

worse on two instances. Considering only the instances where the

differences are statistically significant, the percentage improvement

in solution quality boosts to 27.2%. This is a substantial improve-

ment considering how difficult it is for AdaptG
2
WSAT to find a

better solution. On average, AdaptG
2
WSAT stagnates through the

last 54.9% of total solving time and local search is unproductive.

On the instance 5-SATISFIABLE, AdaptG2
WSAT fails to find any

improving solution in the last 4965 (= 99.3% × 5000) seconds. PXSAT

also accelerates AdaptG
2
WSAT on 11 instances, and slows down

AdaptG
2
WSAT on 3 instances, with an average time reduction of

25.6%. However, due to the stochastic nature of local search where

fluctuation in solving time is high, there are only a couple of in-

stances whose solving time differences are statistically significant.

For Sparrow, PXSAT improves on 73 instances in terms of av-

erage solution quality, out of which 40 are statistically significant.

There is not a single instance where adding PXSAT results in poorer

average solution quality. The average percentage improvement in

solution quality over all instances with statistically significant dif-

ferences is 26.4%. Despite an average improvement of 25.1% on

10 instances where the solving times are different, none of the

differences is statistically significant.

Interestingly, for both AdaptG
2
WSAT and Sparrow, there are 40

instances where the differences in solution quality are statistically

2
http://maxsat.ia.udl.cat

3
http://www.satcompetition.org/2014/

4
https://github.com/dtompkins/ubcsat/releases/tag/v1.2beta18
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Figure 4: Comparing PXSAT versions with the original local search solvers on instances where the average solution quality differences are
statistically significant.

significant. Figure 4 details the differences on the these instances.

When PXSAT makes a significant impact on the solution quality, it

is almost always a positive impact across the board, except on only

two instances. Moreover, the decrease in solution is rather small

(3% and 5% respectively), compared with the gain in all the other

instances. There are 33 overlapping instances between the two sets.

This suggests that PXSAT is particularly useful for a specific set of

instances. We next study the common properties they share and

how the properties benefit PXSAT.

4.2 Why and When PXSAT works?
The benefit of applying PX τ times can be quantified in terms of

number of inspected candidate solutions as

r =

∑τ
i=1

2
qi

τ × n2
, (2)

Because

∑τ
i=1

2
qi

can be prohibitively large, we instead record the

average number of components p =
∑τ
i=1

qi/τ , and use p to derive

a lower bound on r .

Theorem 4.1. Let ř = 2
p/n2, then ř ≤ r .

Proof. ř ≤ r is equivalent to

2

1

τ
∑τ
i=1

qi ≤
1

τ

τ∑
i=1

2
qi . (3)

Jensen’s inequality [13] states, if X is a random variable and φ is a

convex function,

φ (E[X ]) ≤ E [φ(X )] (4)

where the equality holds if and only if x1 = x2 = ... = xn or φ is

linear. Let φ(q) = 2
q
. Since an exponential function is a convex

function, we have

2

1

τ
∑τ
i=1

qi = φ (E[q]) ≤ E [φ(q)] =
1

τ

τ∑
i=1

2
qi .

□

In practice, we also apply a log10 transformation to ř , and define

the result as
ˇlr .

ˇlr = loд10(ř ) = p × loд10(2) − loд10(n2). (5)

Based on the empirical results and the number of components

collected for Sparrow, we perform a correlation analysis between
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Figure 5: Empirical ∆sol versus theoretically approximated ˇlr for
Sparrow. Left subfigure has a scale of [-50,50] on X-axis, while right
subfigure has a scale of [50,650] on X-axis. Points with ∆sol > 0

(∆sol < 0) are colored blue (red).

∆sol and ˇlr . Figure 5 presents the outcome. The figure is split into

two subfigures with different scales on X-axis, because
ˇlr is still

very large on some instances. For example, on aaai10-ipc5
ˇlr = 626,

the number of candidate solutions filtered by PX is at least ř = 10
626

times larger than the number are filtered by Sparrow. This is a result

of the instance being decomposed into over 2117 components in one

application of PX.

There is a clear positive correlation between ∆sol and ˇlr , which
is confirmed by Spearman correlation of 0.656

5
. Given an instance,

increasing the number of component is indeed critical for the per-

formance of PXSAT. On the 27 instances where
ˇlr > 0, PXSAT

always improves ∆sol .

Interestingly, there are 35 instances where
ˇlr < 0 (which sug-

gests PXSAT inspects less candidate solutions) and yet ∆sol > 0

(empirical results show PXSAT improves the performance). Two

(non-exclusive) reasons exist. First, qi across multiple applications

of PX is probably very different, thus ř underestimates r , which

results into a smaller
ˇlr . Second, PXSAT is exploring a neighbor-

hood that is drastically different from the one-bit neighborhood in

local search solvers. Using PXSAT is beneficial because PX can find

improving moves when local search cannot, even if PXSAT checks

fewer candidate solutions.

Table 2 presents summary statistics on the number of compo-

nents and success rate of PX applications. Despite a small median

number of components (≈ 16), PXSATmanages to achieve a median

success rate of 50.2% on PX applications. This is impressive because

5
A Spearman correlation of 1 results when the two variables are monotonically related.

Min Median Mean Max

q 2.000 16.707 129.482 2897.361

Success Rate 0.01% 50.2% 43.2% 96.6%

Table 2: Summary statistics on number of components (q) and PX
Success Rate at finding improving moves for Sparrow-PX.

Figure 6: The VIG (top) and the decomposed recombination
graph (bottom) for SAT_instance_N=111. In this instance,
tunneling will return the best of 2

842 solutions.

PX is only triggered on plateaus that are difficult to escape for local

search.

Figure 6 visualizes the VIG and the decomposed recombination

graph of the instance where Sparrow-PX has the largest perfor-

mance gain. The original graph appears axisymmetric with two

densely connected cores on each side and the connections between

the two cores are sparser. PX successfully breaks one of the cores,

leading to 842 components. One application of PX yields an instant

improvement of 316 additional satisfied clauses, while Sparrow fails

to discover any improving move in the last 72001 bit flips.

Overall,
ˇlr is a very conservative predictor for the success of

PXSAT. When
ˇlr > 0, PXSAT always improves the performance in

the empirical study. When
ˇlr < 0, there is still a good chance of

making a positive impact. PXSAT improves 35 out of 41 instances

with
ˇlr < 0.
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4.3 Improving on a State-of-the-Art MAXSAT
Solver

CCLS [18] is one of the best custom designed solvers for MAXSAT,

and has won several categories of the incomplete algorithms track

of MaxSAT Evaluation 2013 to 2016. Because the CCLS source code

is not publicly available, we used the binary
6
files.

CCLS was evaluated on the same benchmark for comparison,

in order to access the absolute performance of PXSAT-equipped
local search solvers. CCLS has better average solution quality than

the original AdaptG
2
WSAT and Sparrow on 7 instances and 27

instances, respectively. Thanks to PXSAT, AdaptG
2
WSAT-PX con-

sistently outperforms CCLS on every single instance tested, while

Sparrow-PX takes the lead on five additional instances.

5 CONCLUSIONS
PXSAT employs a powerful recombination operators, Partition

Crossover (PX), to exploit decomposability on application instances

and to escape plateaus. PX uses common assignments among lo-

cal optima to decompose Variable Interaction Graphs (VIGs) into

q components. The best solution of 2
q
candidate solutions can

be greedily constructed in linear time. Empirical studies on an

extensive set of application instances show PXSAT statistically

significantly improves the performance of two best local search

solvers, AdaptG
2
WSAT and Sparrow, on application instances. The

improvement in solution quality is as much as 80%.

We present theoretical analysis for highlighting the search effi-

ciency of PXSAT as well as guiding the design of PXSAT. A theoret-

ical performance model is developed to understand why and when

PXSAT is useful. The model successfully predicts when PXSAT is

likely to improve the performance. The model shows, given the

same amount of time, the number of candidate solutions inspected

by PXSAT is up to 10
626

times more than the greedy operators in

modern local search solvers.

This work opens up many interesting future directions that re-

quires further investigation. PX takes linear time to decompose

the VIGs, as it is currently employing a top-down approach for

decomposition. As an alternative, we can construct the decompo-

sition in a bottom-up manner by tracking how the second parent

deviates from the first parent, and incrementally add vertices to the

recombination graph. This could potentially result in a reduction

of the time complexity of Partition Crossover applied to MAXSAT.
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