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Selection: The MDRS Model

1 Introduction

The portfolio selection problem is one of the so-called multi-objective optimization prob-
lems, in which an investor desires to know how her/his capital should be allocated between
the different assets available in the market in order to guarantee the maximum return of
the investment at the minimum risk. The multi-objective nature of these problems is
unquestionable and, since the classical mean-variance optimization problem of Markowitz
was proposed in [12], portfolio theory has evolved considerably. Nowadays more complex
and sophisticated models are used. Some of them include more than two criteria to find
Pareto optimal portfolios [2, 15, 20, 23], thus making the problem more difficult to solve.
Also, instead of the variance of the returns, alternative statistical measures of the risk
have been employed, such as e.g. the semi-variance, the absolute semi-deviation or the
value-at-risk (see [8, 19] and references therein). Furthermore, to make it more realistic,
information about trading, transaction costs, specific requirements of the investor, etc.
can be also considered in the model. To this end, additional constraints are introduced,
such as e.g. cardinality constraints (to limit the number of assets participating in the fea-
sible portfolios), lower and upper bound constraints (to set lower and upper limits for the
amount invested in each asset), and so on.

However, in portfolio selection, deciding the approach to quantify the uncertainty of the
portfolio returns is as important as determining the optimization model to be solved. In
classical problems, the expected returns on assets are considered as problem parameters
and are estimated throughout historical data sets assuming that the vector of returns
on assets is multivariate-normally distributed. But financial information is not always
completely available and, commonly, decisions are made under uncertainty. Then, a more
realistic approach is to assume that the uncertainty of the future returns on the individual
assets can be quantified by means of fuzzy numbers, which allow the introduction of
the imperfect knowledge about the future market behaviour into the model [2, 10, 22].
Furthermore, instead of assuming that the uncertainty of the returns of the individual
assets is approximated by fuzzy quantities, the uncertainty of the future returns of a given
portfolio can be directly approximated by fuzzy numbers using the historical returns on
the portfolio [1, 17, 20, 21].

Under the scheme, in [20], possibility distributions of LR fuzzy numbers are used
to quantify the uncertain returns on a given portfolio, instead of using the combination
of uncertainties provided by the returns of the assets that compose the portfolio. The
membership functions of the LR fuzzy numbers defined are built using sample quan-
tiles information from the historical data of the returns. Besides, [20] proposed a multi-
objective optimization model for the portfolio selection problem, called the possibilistic
Mean-Downside Risk-Skewness (MDRS) model, which is explained hereafter. The objec-
tives considered are the return expected value of the portfolios (to be maximized) and
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two measures of the risk: the skewness of the future returns (to be maximized), and the
absolute semi-deviation below the mean or the downside risk (to be minimized). Note that
[20] introduced the skewness in order to incorporate a measurement of the asymmetry of
the fuzzy return on a given portfolio and to study its role in the possibilistic portfolio
selection problem. The MDRS model also includes bound and cardinality constraints for
achieving both the diversification of investment and the control of the number of assets
that compose the portfolios.

2 The MDRS multi-objective optimization model for port-
folio selection

Next, we describe the MDRS model proposed in [20]. Let us consider a capital market with
N financial assets offering uncertain rates of returns. An investor desires to know which is
the optimal allocation of their wealth among the N assets, looking for the maximization
of the expected return of the investment at the end of the period at the minimum risk.
Denote a portfolio by x = (x1, . . . , xN )T , where xi represents the fraction of the total
investment devoted to the asset i, for every i = 1, ..., N . This means that, if xi 6= 0, the
portfolio x invests in the asset i and the value of xi indicates the corresponding proportion
of the capital budget allocated to the asset i.

2.1 Quantifying the uncertainty

As already mentioned, [20] approximates the uncertainty of the return on a given port-
folio directly instead of using the combination of uncertainties provided by the returns of
the assets that participates in the portfolio, using sample quantiles information from the
historical data.

For a portfolio x, let us consider the historical returns over T quotation periods,
denoted by {rt(x)}Tt=1, whose sample percentiles are given by pj , being j the order of the
percentile. The uncertainty regarding the future return on the portfolio x is approximated
by a fuzzy number P̃x, whose membership function is built using these sample percentiles
pj . That is, the parameters that define P̃x (core, spreads, and shapes) are obtained as
functions of the sample percentiles of the historical dataset of the return on the portfolio
x. To be more precise, the uncertain return on the portfolio x is modelled by means of a
bounded power LR fuzzy number P̃x = {pl, pu, c, d}Lπ ,Rρ , whose membership function is
given by:

µP̃x
(y) =


Lπ(pl−yc ) if pl − c < y ≤ pl,
1 if pl ≤ y ≤ pu,
Rρ(

y−pu
d ) if pu ≤ y < pu + d,

0 otherwise,

(1)

where [pl, pu] is the core (i.e. ([pl, pu] = {y|µP̃x
(y) = 1})), c and d are the left and right

spreads, while π, ρ > 0 are two positive real values known as shape parameters of the
power reference functions Lπ and Rρ, respectively. The reference functions are defined as
Lπ(t) = 1−tπ andRρ(t) = 1−tρ and they are strictly decreasing and upper semicontinuous.

Since the fuzzy number P̃x given by (1) defines a possibility distribution that matches
with its membership function [24], power LR fuzzy numbers can be used to approximate
the uncertain return on the portfolio x, instead of aggregating the possibility distributions
of the individual assets that compose x.
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Figure 1 shows the membership function of P̃x for a given portfolio x, with core
[pl, pu] = [−0.007, 0.006], spreads c = 0.080 and d = 0.438, and the shape parameters
being π = 0.538 and ρ = 0.228, respectively. The points in the x-axis are the observed
weekly returns on the given portfolio x over three years. Note the remarkable asymmetry
of its membership function.
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Recently, some research has appeared concerning the MVS
portfolio model with fuzzy returns based on credibility measures
or using interval analysis. Within the framework of credibility
theory [29], different fuzzy portfolio selection models have al-
ready been proposed, all of them assuming that uncertainty
on the returns is quantified for every asset. In fact, Huang [30]
solved two fuzzy mean–semivariance portfolio selection models
using fuzzy simulation based on a genetic algorithm, Qin et al.
[31] developed some cross-entropy portfolio models in a fuzzy
environment, Li et al. [32] designed a hybrid algorithm to solve
several portfolio optimization models with fuzzy returns, while
Li et al. [25] also applied a genetic procedure to solve some vari-
ants of the MVS model, assuming that the return on each asset
is a fuzzy variable. On the other hand, Lai et al. [8] considered a
mean-semiabsolute deviation portfolio selection model, assum-
ing that the uncertain returns on assets are intervals, and solved
this problem employing linear interval optimization, while
Giove et al. [33] proposed applying interval analysis to handle
imprecise data in a mean–variance model with a minimax regret
function. Recently, Bhattacharyya et al. [26] considered an MVS
model with interval coefficients and transaction costs for fuzzy
portfolio optimization under a number of trading constraints.

In this paper, we introduce the portfolio selection problem
assuming that the uncertainty of the returns on a given port-
folio can be modeled by means of LR-fuzzy numbers of the
power reference functions family whose moments are evaluated
using their possibility distributions. Note that we approximate
the uncertainty of the return on a given portfolio directly in-
stead of using the combination of uncertainties provided by
the returns on assets that compose the portfolio. In addition,
we work with LR-fuzzy numbers whose reference functions
include both trapezoidal and triangular fuzzy numbers as par-
ticular cases. Thus, we extend the classical fuzzy mean–variance
criteria portfolio selection into the possibilistic mean-downside
risk-skewness (MDRS) model, and then we approach the port-
folio selection problem using multiple objective optimization,
where efficiency is used to characterize the optimal portfolios.
The multi-objective formulation allows the more realistic case to
be considered in which several conflicting goals compete in the
allocation decision; efficient portfolios that are based on the in-
vestor’s preferences can also be selected using a multi-objective
evolutionary algorithm.

This paper is organized as follows. Section II introduces the
basic results of fuzzy sets and criteria to model return and risk
using possibilistic moments of LR-fuzzy numbers, which rep-
resent the uncertainty of future returns on a given portfolio
suitably. The downside risk is quantified by using an LR-fuzzy
number, and a coefficient of the possibilistic skewness of a given
portfolio is also defined. Section III presents the multiple objec-
tive optimization model for portfolio selection, which incorpo-
rates some additional restrictions in order to include practical
trading requirements, expert knowledge, and investor wishes.
Alternative portfolio selection strategies are considered in Sec-
tion IV and then tested on a set of stock data from the Spanish
stock market in Section V, where numerical results that are ob-
tained from the application of our multi-objective approach are
also discussed. Conclusions are given in Section VI.
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Fig. 1. Plot of the membership function of P̃X, which has been built using
the historical returns on a given allocation X .

II. POSSIBILISTIC MOMENTS OF A GIVEN PORTFOLIO

For selecting efficient portfolios, the MVS model requires
using, as usual, historical information on the daily, weekly, or
monthly returns on assets, assuming that historical results have
some predictive ability. However, it seems very difficult for an
individual investor to decide which assets should be selected be-
cause of the uncertainty on future returns; thus, some approach
to model uncertainty is needed. Here, we will work with a fuzzy
set theory approach. A possibility distribution can be viewed as
a membership function of a fuzzy number, which allows both the
analysis of uncertainty and the incorporation of expert knowl-
edge. On the one hand, it analyzes the incomplete information
using possibility models, while on the other hand the experts’
knowledge can be incorporated through the possibility grades
of the data [34]. The main question is about the identification
of possibility distributions, but working with power LR-fuzzy
numbers allows us to consider a large number of membership
functions, including those that are usually used for uncertainty
representation: trapezoidal and triangular fuzzy numbers.

Moreover, the use of power LR-fuzzy numbers allows the
decision maker to represent uncertainty with fuzzy numbers for
which the length of the α-cuts is not linear in α, as happens
when using trapezoidal or triangular fuzzy numbers (see, for
instance, the power LR-fuzzy number plotted in Fig. 1).

Concerning how to quantify return, risk, and skewness before
the investment, that is, to have some knowledge about reasonable
values for possibilistic parameters, investors can use the histor-
ical results of returns on a current portfolio or on his/her ideal
portfolio to obtain some useful information; at that moment, the
returns on a market index can also be used (for instance, IBEX35
in the Spanish stock market). In what follows, we introduce a
suitable approach that is based on possibilistic moments.

In this paper, we consider that a set of risky portfolios is given
and that the uncertainty on their future returns is suitably rep-
resented using LR-fuzzy numbers with reference functions of
the power family. This allows approximation of the possibility
distribution of the returns on a given portfolio instead of aggre-
gating the possibility distributions of the individual assets that
compose it. This approach has also been used in order to build
a fuzzy ranking of risky portfolios [35] and to obtain efficient
portfolios in the risk–return tradeoff [36], when the returns on a
given portfolio are modeled as trapezoidal fuzzy numbers.

Figure 1: Plot of the membership function of a P̃x built using the historical returns for a
given portfolio x.

2.2 Objective functions

Let us describe and introduce the explicit mathematical formulation of the objective func-
tions of the MDRS model.

2.2.1 Possibilistic expected return value

To approximate the expected return value on a given portfolio x, the concept of interval-
valued expectation of LR fuzzy numbers is applied [7], as well as the usual defuzzification
approach based on a crisp representation of the possibilistic moments. Thus, following
[20], the possibilistic expected return value, denoted as Ē(P̃x), is given by the middle
point of the interval-valued expectation of the fuzzy number P̃x:

Ē(P̃x) =
pu + pl

2
+
d

2

ρ

ρ+ 1
− c

2

π

π + 1
. (2)

2.2.2 Possibilistic downside risk

Commonly, investors may be concerned with the risk of obtaining returns lower than the
expected return value. Based on this observation, the possibilistic downside risk (i.e. the
possibilistic absolute semi-deviation below the mean) is used to quantify the uncertain
risk of the investment, since it penalizes negative deviations from the expected return, but
not the positive deviations. For a fuzzy number P̃x representing the uncertain return of a
portfolio x, the possibilistic downside risk, denoted as w(P̃x), is defined in [20] as follows:

w(P̃x) = pu − pl + d
ρ

ρ+ 1
+ c

π

π + 1
. (3)

In general terms, it can be seen that w(P̃x) is evaluated as the length of the interval-valued
absolute semi-deviation about the possibilistic mean value, that is, as the amplitude of
the interval-valued expectation E(max{0, Ē(P̃x)− P̃x}).
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2.2.3 Coefficient of possibilistic skewness

If the returns on the portfolios are known to be not symmetrically distributed around the
mean, higher moments cannot be neglected to quantify the uncertainty on the return. A
common measure of the asymmetry of the probability distribution of a random variable
is the skewness, which is based on the third moment. A negative skew in the distribution
of the returns indicates that they are not evenly distributed around the mean, having the
right tail of the distribution shorter than the left tail. A positive skew means just the
opposite, i.e. the left tail is shorter than the right one. Portfolios with a positive skew
could be attractive to investors because extreme returns (those far from the expected
return) are more probably associated with gains (if they are greater than the mean) than
with losses.

Following [18], the coefficient of the possibilistic skewness of a fuzzy number can be cal-
culated using the third possibilistic moment about the possibilistic expected value. Thus,
for a fuzzy number P̃x representing the uncertain return of a portfolio x, the coefficient
of the possibilistic skewness, denoted as S(P̃x), is defined as the ratio between the third
possibilistic moment and the cube of the possibilistic standard deviation as follows:

S(P̃x) =
µ3(P̃x)

w(P̃x)3
, (4)

where µ3(P̃x) is the third possibilistic moment about the possibilistic expected value Ē(P̃x)
given in [18] as:

µ3(P̃x) =
1

4

(
d

ρ

ρ+ 1
− c π

π + 1

)3

+
1

2

(
d3

ρ

ρ+ 3
− c3 π

π + 3

)
+

+
3(pu − pl)

4

×
[
d2
(

ρ

ρ+ 2
− ρ2

(ρ+ 1)2

)
− c2

(
π

π + 2
− π2

(π + 1)2

)]
−3

4

(
d2

ρ

ρ+ 2
+ c2

π

π + 2

)(
d

ρ

ρ+ 1
− c π

π + 1

)
. (5)

According to (5), µ3(P̃x) is the middle point of the interval-valued third moment about
the possibilistic expected value Ē((P̃x− Ē(P̃x))3). Note that the coefficient of possibilistic
skewness is considered instead of directly using the third possibilistic moment in order to
get a scale-independent measure of the asymmetry of the returns of the portfolios.

2.3 Constraints

Each portfolio x = (x1, . . . , xN )T must verify the budget constraint given as
∑N

i=1 xi = 1,
and the non-negative condition of every proportion, i.e. xi ≥ 0 for every i = 1, ..., N , when
short selling is excluded.

Also, lower and upper limits on the budget to be invested in each asset i are imposed in
the MDRS model to assure the diversification of the investment. For each i = 1, 2, ..., N ,
a bound constraint of the type 0 ≤ li ≤ xi ≤ ui is considered, where li and ui denote the
lower and upper bounds for the asset i, respectively.

Additionally, a cardinality constraint is incorporated into the MDRS model to control
the number of assets that participate in the portfolios. The cardinality constraint is
given by hl ≤ c(x) ≤ hu, where c(x) = rank(diag(x)) denotes the rank of the diagonal
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matrix whose diagonal elements are the components of the vector x, and hl and hu are
two positive integer values. Thus, the cardinality constraint ensures that the number of
assets that compose each portfolio x is always within the interval [hl, hu]. Furthermore, if
hl = hu, the portfolios are forced to be always composed by the same number of assets.
Note that the function c(x), which gives the number of positive proportions in the portfolio
x, is quasi-concave.

2.4 The MDRS model

Based on the aforementioned assumptions, the possibilistic Mean-Downside Risk-Skewness
(MDRS) model is formulated as follows:

(MDRS) max Ē(P̃x)

min w(P̃x)

max S(P̃x)

s.t.
N∑
i=1

xi = 1, (budget constraint)

kl ≤ c(x) ≤ ku, (cardinality constraint)
0 ≤ li ≤ xi ≤ ui, (bound constraints)
for i = 1, 2, ..., N.

(6)

As explained, to calculate the explicit values of these objective functions, we need to
know the quantiles of the historical returns of the portfolios to obtain the possibility dis-
tribution of P̃x. Thus, the MDRS model is a non-linear and non-convex multi-objective
optimization problem due to the nature of quantiles calculation. Besides, the introduc-
tion of the cardinality constraint, with a quasi-concave function, means that the model
is also NP-hard [14]. Dealing with a non-linear and non-convex NP-hard multi-objective
optimization problem is not straightforward and classical multi-objective optimization
methods are not suitable. Therefore, the use of heuristic approaches such as evolution-
ary multi-objective optimization algorithms is highly recommended for solving the above
multi-objective optimization problem.

2.5 Data

To completely define the MDRS model, we need a case study with the financial historical
data of the returns of a set of assets in a particular period of time. We can use the weekly
returns on assets from the Spanish IBEX35 index. In particular, we have the historical
data of N = 33 assets1, observed in T = 165 periods (weeks) from January 2013 till March
2016. For every i = 1, . . . , 33 and t = 1, . . . , 165, the sample return on the individual asset
i at week t, denoted by rti, is calculated as follows:

rti =
CPi(t+ 1)− CPi(t)

CPi(t)
, (7)

where CPi(t) denotes the closing price of the asset i on Wednesday at week t. Thus, for
t = 1, . . . , 165, the weekly return on each portfolio x for the week t is obtained as rt(x) =∑33

i=1 rti · xi.
1Although this index is constituted by 35 assets, there were two assets which were not included in the

IBEX35 index through all the time window considered.
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With this, the membership function of the LR fuzzy number P̃x = {pl, pu, c, d}Lπ ,Rρ
representing the uncertainty of the future return on each portfolio x is built using the sam-
ple percentiles pj of its weekly returns set, where j is the order of the percentiles. In par-
ticular, the core and the support of P̃x are represented by the intervals [pl, pu] = [p40, p60]
(medium return values) and [p3, p97] (the 3rd the 97th percentiles), respectively, while the
shape parameters are obtained as π = ln(0.5)/ ln(p40−p20c ) and ρ = ln(0.5)/ ln(p80−p60d ),
assuming that the sample percentiles p20 and p80 have a 50% possibility of being realistic
(they are obtained in such a way that the fuzzy and empirical quartiles coincide).

In [20], they assume that the cardinality of the portfolios is restricted in the MDRS
model to a given number k ∈ N (i.e. kl = ku = k), that is, the cardinality constraint
in (6) is formulated as c(x) = k. This means that every feasible portfolio is obligated
to invest in exactly k of the N available assets. In practice, they set the cardinality in 9
assets (k = 9) following the advise of [3], which suggests that investors should not consider
k-values above one third of the total number of assets because of dominance relationships.
Also, they set the bound limits as li = 0.0 and ui = 0.2 (i = 1, . . . , 33) for assuring the
diversification of the investment.

3 Evolutionary multi-objective optimization algorithms for
solving porfolio selection problems

While classical portfolio optimization problems can be efficiently solved by applying clas-
sical optimization techniques, this is not the case if additional conditions, such as bound
and cardinality constraints, are introduced. Mainly, the most significant difficulty is the
generation of feasible portfolios satisfying the requirements imposed by the new constrains
[11]. Additionally, the solution process required for finding a set of Pareto optimal or non-
dominated portfolios is not trivial, specially in the presence of multiple objectives (three or
more). In this regards, the usefulness of evolutionary multi-objective optimization (EMO)
[4, 5] for solving constrained multi-objective portfolio selection problems is doubtless. In
[11, 13], comprehensive literature reviews and recommendations for best practices about
the use of EMO algorithms in portfolio selection problems are presented, which is a proof
of the growing interest on this research field.

However, as concluded by [13], the majority of the research done in the EMO field
for solving portfolio selection problems is focussed on models making use of only two
objectives, being the expected return value and the variance the most commonly used
objectives. Besides, according to [13], cardinality and bound constraints are mostly con-
sidered to define feasible portfolios.

Note that the majority of the works consider the expected return and the measures of
the risk as known parameters. Applications of fuzzy numbers for quantifying the uncer-
tainty of future returns on assets, using credibility or possibility distributions, can also be
found in the literature. For example, [2] considered a fuzzy mean-variance-skewness model
with cardinality and trading constraints and solved it by applying both fuzzy simulation
and an elitist optimization genetic algorithm. [1] implemented a bi-objective optimiza-
tion genetic algorithm for solving a fuzzy mean-downside risk model with cardinality and
bound constraints, in which the approximation of the uncertain returns was done through
trapezoidal fuzzy numbers. In [9], a multi-criteria credibilistic portfolio selection model
was proposed, which maximized (short and long-term) return and liquidity, and consid-
ered the portfolio risk as a credibility-based fuzzy chance constraint. The fuzzy estimates
were obtained assuming both trapezoidal possibility distributions and general functional
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forms. This model, which also included bound and cardinality constraints, was solved
by applying a hybrid algorithm that integrated fuzzy simulation with a real-coded ge-
netic algorithm. In [21], a fuzzy cardinality constrained bi-objective optimization model
was solved by means of a genetic algorithm. They also use the fuzzy VaR in a post-
optimization decision support stage to find Pareto optimal portfolios according to the
investor preferences.

Concerning the MDRS model, [20] applied an evolutionary procedure specially de-
signed for generating non-dominated portfolios of two alternative reformulations of the
MDRS model. Each of these reformulations corresponds to a bi-objective optimization
problem which optimizes two of the objectives of the MDRS model, while the third ob-
jective is considered as an additional constraint. With this, the authors analysed the
influence of the skewness either as a criteria or as a constraint. The results obtained
supported previous research in this regard: the introduction of the skewness as a goal
provokes important changes in the Pareto optimal front of the portfolio selection problem,
and consequently in the patterns of investment.

However, the genetic procedure developed in [20] was designed to manage bi-objective
optimization problems and, therefore, the possibilistic MDRS model was not solved as
a whole constrained multi-objective optimization problem. Later, [17] has solved the
MDRS model optimizing the three criteria at the same time. They considered three EMO
algorithms to find non-dominated portfolios: NSGA-II [6], MOEA/D [25] and GWASF-
GA [16]. However, applying EMO algorithms to constrained portfolio selection problems
requires a special care for handling the objectives and constraints [11]. In the MDRS
model, the difficulty mainly comes from the cardinality constraint, since only a limited
number of the available assets can participate in the feasible portfolios, but not all of
them. To internally manage the constraints in the EMO algorithm, one option may
be the use of common genetic operators with the application of a repair mechanism to
guarantee the feasibility of the new portfolios generated [11]. Alternatively, [17] proposed
new mutation, crossover and reparation operators designed ad-hoc for generating feasible
portfolios according to the budget, bound and cardinality constraints included in the
MDRS model. They showed that better non-dominated portfolios are obtained if the new
operators are incorporated in the three EMO algorithms considered, in comparison to the
results obtained by commonly used operators and the repair mechanism.
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