
Enhancing Partition Crossover with
Articulation Points Analysis

Francisco Chicano, Gabriela Ochoa, Darrell Whitley, Renato Tinós

2. ELEMENTOS DE LA IDENTIDAD

2.2. Versiones de la marca Universidad de Málaga

Esta actualización del manual recoge el uso horizontal de la marca UNIVERSIDAD
DE MÁLAGA tal y como se muestra en la imagen. También se ha corregido el uso
negativo del escudo. En esta versión se respeta el original diseño de la imagen de
“La Paloma”.

VERSIÓN HORIZONTAL EN POSITIVO VERSIÓN VERTICAL EN POSITIVO

VERSIÓN HORIZONTAL EN NEGATIVO VERSIÓN VERTICAL EN NEGATIVO

5

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 2

• Gray-Box (vs. Black-Box) Optimization

• Partition Crossover and Articulation Points

• Deterministic Recombination and Iterated Local Search

• Experiments

• Conclusions and Future Work

Outline

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 3

Gray-Box (vs. Black-Box) Optimization

x f(x)

x f(x) For most of real problems we
know (almost) all the details

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 4

Gray-Box (vs. Black-Box) Optimization

x f(x)

x f(x) For most of real problems we
know (almost) all the details

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 5

Gray-Box structure: MK Landscapes

Example (k=2):

f = + + + f(1)(x) f(2)(x) f(3)(x) f(4)(x)

x1 x2 x3 x4

derivative, they reduce the time needed to identify improv-
ing moves from O(k22k) to O(k3). In addition, the new
approach avoids the use of the Walsh transform, making the
approach conceptually simpler.

In this paper, we generalize this result to present a local
search algorithm that can look r moves ahead and iden-
tify all improving moves. This means that moves are being
identified in a neighborhood containing all solutions that lie
within a Hamming ball of radius r around the current so-
lution. We assume that r = O(1). If r ⌧ n, the number
of solutions in such a neighborhood is ⇥(nr). New improv-
ing moves located up to r moves away can be identified in
constant time. The memory required by our approach is
O(n). To achieve O(1) time per move, the number of sub-
functions in which any variable appears must be bounded by
some constant c. We then prove that the resulting algorithm
requires O((3kc)rn) space to track potential moves.

In order to evaluate our approach we perform an experi-
mental study based on NKq-landscapes. The results reveal
not only that the time required by the next ascent is inde-
pendent of n, but also that increasing r we obtain a signifi-
cant gain in the quality of the solutions found.

The rest of the paper is organized as follows. In the next
section we introduce the pseudo-Boolean optimization prob-
lems. Section 3 defines the“Scores”of a solution and provide
an algorithm to e�ciently update them during a local search
algorithm. We propose in Section 4 a next ascent hill climber
with the ability to identify improving moves in a ball of ra-
dius r in constant time. Section 5 empirically analyzes this
hill climber using NKq-landscapes instances and Section 6
outlines some conclusions and future work.

2. PSEUDO-BOOLEAN OPTIMIZATION
Our method for identifying improving moves in the radius

r Hamming ball can be applied to all k-bounded pseudo-
Boolean Optimization problems. This makes our method
quite general: every compressible pseudo-Boolean Optimiza-
tion problem can be transformed into a quadratic pseudo-
Boolean Optimization problem with k = 2.

The family of k-bounded pseudo-Boolean Optimization
problems have also been described as an embedded landscape.
An embedded landscape [3] with bounded epistasis k is de-
fined as a function f(x) that can be written as the sum
of m subfunctions, each one depending at most on k input
variables. That is:

f(x) =
mX

i=1

f
(i)(x), (1)

where the subfunctions f
(i) depend only on k components

of x. Embedded Landscapes generalize NK-landscapes and
the MAX-kSAT problem. We will consider in this paper that
the number of subfunctions is linear in n, that is m 2 O(n).
For NK-landscapes m = n and is a common assumption in
MAX-kSAT that m 2 O(n).

3. SCORES IN THE HAMMING BALL
For v, x 2 Bn, and a pseudo-Boolean function f : Bn ! R,

we denote the Score of x with respect to move v as Sv(x),
defined as follows:1

Sv(x) = f(x� v)� f(x), (2)
1We omit the function f in Sv(x) to simplify the notation.

where � denotes the exclusive OR bitwise operation. The
Score Sv(x) is the change in the objective function when we
move from solution x to solution x� v, that is obtained by
flipping in x all the bits that are 1 in v.
All possible Scores for strings v with |v| r must be

stored as a vector. The Score vector is updated as local
search moves from one solution to another. This makes it
possible to know where the improving moves are in a ball of
radius r around the current solution. For next ascent, all of
the improving moves can be bu↵ered. An approximate form
of steepest ascent local search can be implemented using
multiple bu↵ers [9].
If we naively use equation (2) to explicitly update this

Score vector, we will have to evaluate all
Pr

i=0

�
n
i

�
neigh-

bors in the Hamming ball. Instead, if the objective function
satisfies some requirements described below, we can design
an e�cient next ascent hill climber for the radius r neigh-
borhood that only stores a linear number of Score values and
requires a constant time to update them. We next explain
the theoretical foundations of this next ascent hill climber.
The first requirement for the objective function is that it

must be written such that each subfunction depends only on
k Boolean variables of x (k-bounded epistasis). In this case,
we can write the scoring function Sv(x) as an embedded
landscape:

Sv(x) =
mX

l=1

⇣
f
(l)(x� v)� f

(l)(x)
⌘
=

mX

l=1

S
(l)
v (x), (3)

where we use S
(l)
v to represent the scoring functions of the

subfunctions f (l). Let us define wl 2 Bn as the binary string
such that the i-th element of wl is 1 if and only if f (l) depends
on variable xi. The vector wl can be considered as a mask
that characterizes the variables that a↵ect f

(l). Since f
(l)

has bounded epistasis k, the number of ones in wl, denoted
with |wl|, is at most k. By the definition of wl, the next
equalities immediately follow.

f
(l)(x� v) = f

(l)(x) for all v 2 Bn with v ^ wl = 0, (4)

S
(l)
v (x) =

⇢
0 if wl ^ v = 0,

S
(l)
v^wl

(x) otherwise.
(5)

Equation (5) claims that if none of the variables that
change in the move characterized by v is an argument of
f
(l) the Score of this subfunction is zero, since the value of

this subfunction will not change from f
(l)(x) to f

(l)(x� v).
On the other hand, if f (l) depends on variables that change,
we only need to consider for the evaluation of S

(l)
v (x) the

changed variables that a↵ect f (l). These variables are char-
acterized by the mask vector v ^ wl. With the help of (5)
we can write (3) as:

Sv(x) =
mX

l=1
wl^v 6=0

S
(l)
v^wl

(x), (6)

3.1 Scores Decomposition
The Score values in a ball of radius r give more informa-

tion than just the change in the objective function for moves
in that ball. Let us illustrate this idea with the moves in the
balls of radius r = 1 and r = 2. Let us assume that xi and
xj are two variables that do not appear together as argu-
ments of any subfunction f

(l). Then, the Score of the move

Each subfunction is unknown
and depends on k variables

All compresible pseudo-Boolean
functions can be transformed into

this in polynomial time

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 6

Variable Interaction

f = + + + f(1)(x) f(2)(x) f(3)(x) f(4)(x)

x1 x2 x3 x4

xi and xj interact when they appear together in the same subfunction*

If xi and xj don’t interact: ∆ij = ∆i + ∆j

x4 x3

x1 x2

Variable Interaction Graph (VIG)

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 7

Let us suppose our function has the following VIG…

�if(x1, x2, . . . , xn) = f(x1, x2, . . . , 1i, . . . , xn)� f(x1, x2, . . . , 0i, . . . , xn)

f(x1, x2, x3, x4) = x1x2 + x2x3 + x2x4 + x3x4

x9

x20

x23

x22

x21

x8

x10

x1 x2

x3

x4

x5

x6
x7

x15

x14

x13

x12

x11

x16

x19

x18

x17

1

Partition Crossover (PX)

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 8

Let us suppose our function has the following VIG…
�if(x1, x2, . . . , xn) = f(x1, x2, . . . , 1i, . . . , xn)� f(x1, x2, . . . , 0i, . . . , xn)

f(x1, x2, x3, x4) = x1x2 + x2x3 + x2x4 + x3x4

x9

x20

x23

x22

x21

x8

x10

x1 x2

x3

x4

x5

x6
x7

x15

x14

x13

x12

x11

x16

x19

x18

x17

1

0
1

0 0
1

00

0
1

0

1

0
1

0

0
1

1
0 1

0

0

0
1

Partition Crossover (PX)

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 9

Let us suppose our function has the following VIG…
�if(x1, x2, . . . , xn) = f(x1, x2, . . . , 1i, . . . , xn)� f(x1, x2, . . . , 0i, . . . , xn)

f(x1, x2, x3, x4) = x1x2 + x2x3 + x2x4 + x3x4

x9

x20

x23

x22

x21

x8

x10

x1 x2

x3

x4

x5

x6
x7

x15

x14

x13

x12

x11

x16

x19

x18

x17

1

0
1

1
0

1

00

0
1

1

0

0
1

0

1

1 1
0 1

1
0

1

1

0
1

0 0
1

00

0
1

0

1

0
1

0

0
1

1
0 1

0

0

0
1

Partition Crossover (PX)

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 10

Let us suppose our function has the following VIG…
�if(x1, x2, . . . , xn) = f(x1, x2, . . . , 1i, . . . , xn)� f(x1, x2, . . . , 0i, . . . , xn)

f(x1, x2, x3, x4) = x1x2 + x2x3 + x2x4 + x3x4

x9

x20

x23

x22

x21

x8

x10

x1 x2

x3

x4

x5

x6
x7

x15

x14

x13

x12

x11

x16

x19

x18

x17

1

0
1

1
0

1

00

0
1

1

0

0
1

0

1

1 1
0 1

1
0

1

1

0
1

0 0
1

00

0
1

0

1

0
1

0

0
1

1
0 1

0

0

0
1

Partition Crossover (PX)

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 11

PX creates a graph with only the differing variables (recombination graph)

All the variables in a component are taken from the same parent

The contribution of each component to the fitness value of the offspring is
independent of each other

x23

x18

x9

x3

x5

x16

FOGA 2015: Tinós, Whitley, C.

Partition Crossover (PX)

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 12

PX creates a graph with only the differing variables (recombination graph)

All the variables in a component are taken from the same parent

The contribution of each component to the fitness value of the offspring is
independent of each other

Partition Crossover (PX)

x23

x18

x9

x3

x5

x16

If there are q
components, the best

offspring out of 2q
solutions is obtained

FOGA 2015: Tinós, Whitley, C.

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 13

Articulation Points in a Graph

Articulation point
Connected sub-component

a

C1

C2

C3

C4

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 14

Articulation Points in a Graph

Enhancing Partition Crossover with Articulation Points Analysis GECCO ’18, July 15–19, 2018, Kyoto, Japan

0

1

2

3

7

8

9
11

12

13

15

16

Figure 2: Recombination Graph for the solutions (parents)
P1 = 000000000000000000 and P2 = 111100011101110110.

from one of the two parents. The recombination graph also de�nes
a reduced evaluation function. This new evaluation function is
linearly separable, and decomposes into q subfunctions de�ned
over the recombining components.

�(x 0) = a + �1(9, 11, 16) + �2(0, 1, 2) + �3(3, 7, 8, 12, 13, 15),
where �(x 0) = f |h (x 0) and x

0 are restricted to a subspace of the
hyperplaneh that contains the parent strings P1 and P2 as well as all
of their potential o�spring under Partition Crossover. The constant
a = f (x 0) �Õ3

i=1 �i (x 0) depends on the common variables. We can
now see how Partition Crossover works. Every recombination over
q recombining components induces a new separable function �(x 0)
that is de�ned as:

�(x 0) = a +

q’
i=1

�i (x 0). (2)

Since �(x 0) is a separable function, Partition Crossover can be
greedy and select which parent yields the best partial solution for
each subfunction �i (x 0). The following Partition Crossover The-
orem was originally proven to hold for the Traveling Salesman
Problem [8]. Tinós et al. [6] have proven the following result also
holds for all k-bounded pseudo-Boolean functions.

T������ 2.1 (T�� P�������� C�������� T������). Given q
linearly separable recombining components with bounded epistasis,
Partition Crossover returns the best of 2q � 2 reachable solutions
distinct from parent solutions P1 and P2 in O(N) time.

3 ARTICULATION POINTS ANALYSIS
The performance of Partition Crossover is related to the number
of connected components it can �nd in the recombination graph,
because the operator implicitly explores a number of solutions
which is exponential in the number of connected components. We
propose here an improvement over Partition Crossover, consist-
ing in �ipping some variables in one of the parent solutions in
order to break the connected components of the recombination
graph, increasing the number of connected components. A node in
a graph whose removal can break a connected component is called
articulation point [5] (see Figure 3). By �nding and evaluating the
articulation points of the recombination graph, our proposed oper-
ator is able to explore an exponentially larger set of solutions with
the same asymptotic cost as the original Partition Crossover, that is,

O(m) wherem is the number of edges in the recombination graph.
The new operator is called Articulation Points Partition Crossover
(APX). In short, for each variable which is an articulation point
of the recombination graph, APX computes the increase in the
objective function of assigning the same value to that variable in
both parents and applying Partition Crossover. This computation
is independently performed for each connected component and all
the contributions are added to give the overall contribution. If there
is no articulation point in the recombination graph or removing an
articulation point does not increase the objective value, the operator
works as the original PX. In the following sections we detail the
theoretical background of the operator.

x2

x1

x3 x4

x0

Figure 3: Example of articulation points. Nodes x3 and x4 are
articulation points of the graph.

3.1 Finding Articulation Points
Articulation points in a graph can be found using an algorithm due
to Tarjan [5]. This algorithm is a slight modi�cation of a Depth First
Search (DFS) exploration of the graph. The algorithm can also be
used to �nd the connected components required for PX. Let’s call
DFS tree the exploration tree that is obtained after a DFS exploration
of a graph. Then, a node � is an articulation point if any of the
following two conditions hold [5]:

• the node is the root of the DFS tree and it has more than one
child, or

• the node is not the root of the DFS tree and it has a child
subtree with all its edges incident in nodes found not earlier
than � in the DFS tree.

These conditions can be used to implement an algorithm to �nd
all the articulation points of a graph G(V ,E). The complexity of
this algorithm is: O(|V | + |E |). In the case of a k-bounded pseudo-
Boolean function, |E | is proportional to |V | and the complexity is
O(|V |) = O(N).

3.2 Evaluating Articulation Points
Removing an articulation point is not always useful, since it implies
�ipping a variable in one of the parent solutions and this could
decrease the objective value, yielding an o�spring that may not im-
prove the parent solutions. Let x and � denote the parent solutions,
G(V ,E) the recombination graph and C ✓ V one connected com-
ponent of G. We will denote with 1C a binary string with 1 in the
positions of the variables in C and 0 in the remaining positions (of
variables not in C). We will use F to denote the set of subfunctions
fi whose sum is f . Given a set of variables C , we denote with FC
the subset of subfunctions of F that depend on a variable in C . Let

Articulation Points

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 15

�if(x1, x2, . . . , xn) = f(x1, x2, . . . , 1i, . . . , xn)� f(x1, x2, . . . , 0i, . . . , xn)

f(x1, x2, x3, x4) = x1x2 + x2x3 + x2x4 + x3x4

x9

x20

x23

x22

x21

x8

x10

x1 x2

x3

x4

x5

x6
x7

x15

x14

x13

x12

x11

x16

x19

x18

x17

1

0
1

1
0

1

00

0
1

1

0

0
1

0

1

1 1 1
1

1
0

1

1

0
1

0 0
1

00

0
1

0

1

0
1

0

0
1

1
0 1

0

0

0
1

Articulation Points Partition Crossover (APX)

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 16

x23

x18

x9

x3

x5

x16

x1

Articulation Points Partition Crossover (APX)

Original PX would find 2
components, and would

provide the best of 4 solutions

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 17

x23

x18

x9

x3

x5

x16

x1

Articulation Points Partition Crossover (APX)
APX identifies articulation points in the recombination graph

It implicitly considers all the solutions PX would consider if one or none articulation
point is removed from each connected component

APX will consider 2 and 3
components and will provide

the best of 32 solutions

APX can break one connected
component by flipping

variables in one of the parents

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 18

Articulation Points Partition Crossover (APX)
All the analysis can be done using Tarjan’s algorithm to find articulation points (DFS-
like algorithm) : time complexity is the same as the original PX

a1

C1

C2
C3 C4

a2

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 19

Articulation Points Partition Crossover (APX)
The number of implicitly studied solutions is:

Enhancing Partition Crossover with Articulation Points Analysis GECCO ’18, July 15–19, 2018, Kyoto, Japan

selects the one providing the maximum value for �C . We defer the
analysis of �ipping multiple articulation points in a connected com-
ponent to future work. The next theorem presents the expression
for the objective function of an o�spring z of APX and the number
of implicitly explored solutions (from which the o�spring is the
best).

T������ 3.2. Given two solutions x and � whose o�spring by
APX is z, the value of f (z) is

f (z) =
’

C 2CC(G)
�C (z) +

’
h2F�Fx��

h(z) (4)

whereCC(G) is the set of connected components of the recombination
graph of x and �, and F � Fx �� is the set of subfunctions that only
depend on variables with the same value in x and �. The expression
of �C (z) is:

�C (z) = max
a2AP (C)
t2{x,�}

©≠
´
’

h2Fa⇤
h(t � 1a) +

da’
i=1

�Ca
i ,a (t)

™Æ
¨

(5)

where �Ca
i ,a (t) = max

⇣
�Ca

i
(t � 1a),�Ca

i
(t � 1C)

⌘
is the contribu-

tion of the connected sub-component Ca
i when articulation point a is

removed and Fa⇤ = F {a } �[dai=1FCa
i
is the set of subfunctions that de-

pend on a but not on any other variable inC . The number of solutions
that APX implicitly explores is:

E(x ,�) = 2 |CC(G) |
÷

C 2CC(G)

©≠
´
1 � eC +

’
a2AP (C)

⇣
2da � 1

⌘™Æ
¨
, (6)

where eC is the number of edges in the connected component C join-
ing two articulation points. Observe that 2 |CC(G) | is the number of
solutions implicitly explored by the original PX.

P����. Equation (5) is a consequence of Lemma 3.1 where the
maximum over all the articulation points in a connected component
is taken. Equation (4) is a sum of the contribution to the objective
value of each connected component plus the sum of the evaluation
of the subfunctions that were not considered in the evaluation of
the connected components because they do not depend on any
variable in a connected component (they only depend on variables
with the same values in both parents).

Regarding the number of solutions implicitly explored, the inde-
pendent analysis of each articulation point (Lemma 3.1) provides a
count of 2da+1 combinations of variables, but we have to subtract
from the count the combinations that are explored in the analysis
of two di�erent articulation points. Two combinations implicitly
explored by the analysis of any articulation point are those of par-
ent solutions x and �. We have to remove these two combinations
from any 2da+1 count and add 2 to the �nal sum (to take them into
account). If two articulation points are joined by an edge, there are
two additional common combinations generated by choosing a dif-
ferent parent for the variables at each side of the edge (see Figure 5).
Thus, we have to subtract 2eC to the count of explored combina-
tions, where eC is the number of edges joining two articulation
points in C .

Given two articulation points, if they are not joined by an edge,
then the only two common combinations explored by both are the
parent combinations. Figure 6 helps to see this. Let us suppose that

Articulation points

a1

C3

C4

C2

C1

a2

Figure 5: Two articulation points joined by an edge. The anal-
yses of a1 and a2 explore four common combinations, where
the variables at each side of the edge select one of the two
parents independently.

we are exploring a combination common to the analysis of a1 and
a2. Then, all the variables in the sub-component C3 must be taken
from the same parent, including a2 and� . The analysis of a2 reveals
that a1 and the sub-components C1 and C2 must be taken from
the same parent as variable � in sub-component C3. Thus, all the
variables in the component must be taken from the same parent
and we are exploring one of the parent combinations.

Articulation points

a1

C2

C1

C3

a2
v

Figure 6: Two articulation points not joined by an edge. The
analyses of a1 and a2 explore only two common combina-
tions: the ones found in the parent solutions.

In summary, the number of explored combinations in one con-
nected component C is:

’
a2AP (C)

(2da+1�2)�2eC+2 = 2 ©≠
´
1 � eC +

’
a2AP (C)

(2da � 1)™Æ
¨
. (7)

The product of Equation (7) extended to all the connected com-
ponents of G is Equation (6). ⇤

A more practical (easier to remember) lower bound for the num-
ber of explored solutions is provided in the next corollary.

C�������� 3.3. Given two solutions x and �, a lower bound of
the number of solutions implicitly evaluated in APX is:

E(x ,�) � 2 |CC(G) |
÷

C2CC (G)
|AP (C)|>0

2(1 + |AP(C)|) (8)

Number of solutions
considered by PX Edges joining two

articulation points

Degree of an articulation point
in the recominbation graph

Connected
component

Enhancing Partition Crossover with Articulation Points Analysis GECCO ’18, July 15–19, 2018, Kyoto, Japan

selects the one providing the maximum value for �C . We defer the
analysis of �ipping multiple articulation points in a connected com-
ponent to future work. The next theorem presents the expression
for the objective function of an o�spring z of APX and the number
of implicitly explored solutions (from which the o�spring is the
best).

T������ 3.2. Given two solutions x and � whose o�spring by
APX is z, the value of f (z) is

f (z) =
’

C 2CC(G)
�C (z) +

’
h2F�Fx��

h(z) (4)

whereCC(G) is the set of connected components of the recombination
graph of x and �, and F � Fx �� is the set of subfunctions that only
depend on variables with the same value in x and �. The expression
of �C (z) is:

�C (z) = max
a2AP (C)
t2{x,�}

©≠
´
’

h2Fa⇤
h(t � 1a) +

da’
i=1

�Ca
i ,a (t)

™Æ
¨

(5)

where �Ca
i ,a (t) = max

⇣
�Ca

i
(t � 1a),�Ca

i
(t � 1C)

⌘
is the contribu-

tion of the connected sub-component Ca
i when articulation point a is

removed and Fa⇤ = F {a } �[dai=1FCa
i
is the set of subfunctions that de-

pend on a but not on any other variable inC . The number of solutions
that APX implicitly explores is:

E(x ,�) = 2 |CC(G) |
÷

C 2CC(G)

©≠
´
1 � eC +

’
a2AP (C)

⇣
2da � 1

⌘™Æ
¨
, (6)

where eC is the number of edges in the connected component C join-
ing two articulation points. Observe that 2 |CC(G) | is the number of
solutions implicitly explored by the original PX.

P����. Equation (5) is a consequence of Lemma 3.1 where the
maximum over all the articulation points in a connected component
is taken. Equation (4) is a sum of the contribution to the objective
value of each connected component plus the sum of the evaluation
of the subfunctions that were not considered in the evaluation of
the connected components because they do not depend on any
variable in a connected component (they only depend on variables
with the same values in both parents).

Regarding the number of solutions implicitly explored, the inde-
pendent analysis of each articulation point (Lemma 3.1) provides a
count of 2da+1 combinations of variables, but we have to subtract
from the count the combinations that are explored in the analysis
of two di�erent articulation points. Two combinations implicitly
explored by the analysis of any articulation point are those of par-
ent solutions x and �. We have to remove these two combinations
from any 2da+1 count and add 2 to the �nal sum (to take them into
account). If two articulation points are joined by an edge, there are
two additional common combinations generated by choosing a dif-
ferent parent for the variables at each side of the edge (see Figure 5).
Thus, we have to subtract 2eC to the count of explored combina-
tions, where eC is the number of edges joining two articulation
points in C .

Given two articulation points, if they are not joined by an edge,
then the only two common combinations explored by both are the
parent combinations. Figure 6 helps to see this. Let us suppose that

Articulation points

a1

C3

C4

C2

C1

a2

Figure 5: Two articulation points joined by an edge. The anal-
yses of a1 and a2 explore four common combinations, where
the variables at each side of the edge select one of the two
parents independently.

we are exploring a combination common to the analysis of a1 and
a2. Then, all the variables in the sub-component C3 must be taken
from the same parent, including a2 and� . The analysis of a2 reveals
that a1 and the sub-components C1 and C2 must be taken from
the same parent as variable � in sub-component C3. Thus, all the
variables in the component must be taken from the same parent
and we are exploring one of the parent combinations.

Articulation points

a1

C2

C1

C3

a2
v

Figure 6: Two articulation points not joined by an edge. The
analyses of a1 and a2 explore only two common combina-
tions: the ones found in the parent solutions.

In summary, the number of explored combinations in one con-
nected component C is:

’
a2AP (C)

(2da+1�2)�2eC+2 = 2 ©≠
´
1 � eC +

’
a2AP (C)

(2da � 1)™Æ
¨
. (7)

The product of Equation (7) extended to all the connected com-
ponents of G is Equation (6). ⇤

A more practical (easier to remember) lower bound for the num-
ber of explored solutions is provided in the next corollary.

C�������� 3.3. Given two solutions x and �, a lower bound of
the number of solutions implicitly evaluated in APX is:

E(x ,�) � 2 |CC(G) |
÷

C2CC (G)
|AP (C)|>0

2(1 + |AP(C)|) (8)

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 20

Deterministic Recombination and
Iterated Local Search (DRILS)

GECCO ’17, July 15-19, 2017, Berlin, Germany F. Chicano et al.

Algorithm 1 HiReLS
1: stack ;
2: while not stopping condition do
3: current HBHC(random());
4: current.level 0;
5: if stack.isEmpty() or stack.peek().level > 0 then
6: stack.push(current);
7: else
8: pxSuccess true;
9: while !stack.isEmpty() and pxSuccess and

stack.peek().level = current.level do
10: top stack.pop();
11: child PX(top, current);
12: pxSuccess child , top and child , current;
13: if pxSuccess then
14: current HBHC(child);
15: current.level++;
16: end if
17: end while
18: if pxSuccess then
19: stack.push(current);
20: end if
21: end if
22: end while

PX PX PX

PX

level-0

level-1

Random solutions

Figure 3: An illustration of HiReLS. Filled circles are local
optima and curly arrows represent the HBHC.

�en DRILS perturbs the local optimum by randomly �ipping �N
bits, where � is a small fraction (below 0.15 in the experiments).
We call the parameter � the perturbation factor. �is process results
in a so� restart and, a�er applying HBHC, it generates a new local
optimum that should be relative close in Hamming distance to
the previous local optimum. �ese two consecutively generated
local optima can now be recombined using Partition Crossover.
�e o�spring solution can also be improved by HBHC if necessary.
�e process is then iterated: the most recently discovered local
optimum is perturbed and a new local optimum is generated. A

Algorithm 2 DRILS
1: current HBHC(random());
2: while not stopping condition do
3: next HBHC (perturb(current));
4: child PX(current, next);
5: if child = current or child = next then
6: current next;
7: else
8: current HBHC(child);
9: end if
10: end while

PX PX

Figure 4: Graphical illustration of DRILS. Curly arrows rep-
resent HBHCwhile normal arrows represent a perturbation
�ipping �N random bits.

graphical illustration of the algorithm is presented in Figure 4 and
the pseudocode is shown in Algorithm 2.

4 EXPERIMENTAL STUDY
In this section we analyze the performance of our two proposals on
adjacent and random NKQ Landscapes. We will also compare the
performance with one of the best state-of-the-art algorithms for
pseudo-Boolean optimization in a gray-box se�ing: the Gray-Box
Parameterless Population Pyramid algorithm (GB-P3) [2].

In all the experiments the radius of the neighborhood in the
Hamming Ball Hill Climber was set to 1. �e machine used in
the experiments is a multicore machine with four Intel Xeon CPU
(E5-2670 v3) at 2.3 GHz, a total of 48 cores, 64 GB of memory and
Ubuntu 14.04 LTS. HiReLS and DRILS were implemented in Java 1.6
and the memory usage was limited to 3GB during all the executions.
�e source code is freely available in GitHub2.

4.1 Solving Adjacent NKQ Landscapes
In a �rst experiment we run HiReLS, DRILS and GB-P3 using 50
di�erent instances of the adjacent NKQ Landscapes and 10 indepen-
dent runs per instance. �e stopping condition for all algorithms
is to reach �ve minutes of computation3. �e number of variables
is N = 100, 000, the value for Q is 64 and the value for K = k � 1
was changed from 1 to 5 (10 instances were generated for each
value of K). In the case of DRILS we used di�erent values for the
perturbation factor � : 0.005, 0.01, 0.05, 0.10 and 0.15. In Figures 5
and 6 we plot the average �tness (over 100 samples, 10 instances
and 10 runs) found by the algorithms at each time. For the sake of
clarity we omi�ed the results of DRILS of perturbation factors 0.05
and 0.10 and we only show the plots for K = 1 and K = 5.

2h�ps://github.com/jfrchicanog/E�cientHillClimbers
3�e stopping condition is arbitrary, but most of the algorithms seem to converge a�er
�ve minutes. A stopping condition based on the algorithm progress should be used in
future work.

Hill Climber

Perturbation

(! N bits flipped)

Random Solution Local Optimum

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 21

Experimental Results
An NK Landscape is a pseudo-Boolean optimization problem with objective function:

where each subfunction f(l) depends on variable xl and K other variables

MAX-SAT consists in finding an assignment of variables to Boolean (true and false)
values such that the maximum number of clauses is satisfied

A clause is an OR of literals: x1 ∨ ¬x2 ∨ x3

r = 1 n
r = 2

�n
2

�

r = 3
�n
3

�

r
�n
r

�

Ball
Pr

i=1

�n
i

�

S1(x) = f(x� 1)� f(x)

Sv(x) = f(x� v)� f(x) =
mX

l=1

(f (l)(x� v)� f (l)(x)) =
mX

l=1

S(l)(x)

S4(x) = f(x� 4)� f(x)

S1,4(x) = f(x� 1, 4)� f(x)

S1,4(x) = S1(x) + S4(x)

S1(x) = f (1)(x� 1)� f (1)(x)

S2(x) = f (1)(x� 2)� f (1)(x) + f (2)(x� 2)� f (2)(x) + f (3)(x� 2)� f (3)(x)

S1,2(x) = f (1)(x�1, 2)�f (1)(x)+f (2)(x�1, 2)�f (2)(x)+f (3)(x�1, 2)�f (3)(x)

S1,2(x) 6= S1(x) + S2(x)

f(x) =
NX

l=1

f (l)(x)

1

x1

x2

x3x4

x5

x6

x7

x8 x9

x10

(a) Sample VIG

x1

x2

x3x4

x5

x6

x7

x8 x9

x10

(b) Selected and adjacent variables

x1

x2

x3x4

x5

x6

x7

x8 x9

x10

(c) Sample random VIG

Figure 1: A sample Variable Interaction Graph with two changing variables
(left) and the set of variables and adjacent variables (right).

Random model

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 22

Experimental Results
Example for NKQ Landscapes with N=100 000 and K=2 (DRILS+APX)

There are 4339 nodes grouped in 858 components with 1825 articulation points (in red)

Enhancing Partition Crossover with Articulation Points Analysis GECCO ’18, July 15–19, 2018, Kyoto, Japan

have several articulation points. The trend in the number of articu-
lation points is not as clear as the number of components. While the
number of components decrease with K , the number of articulation
points can increase or decrease with K . The average degree of the
articulation points is slightly larger than 2 (its minimum value). It is
not common to see high degrees; the maximum value we observed
in the experiments was 13. High values are more probable when K

is high. Regarding the number of explored solutions, we observe
that the logarithm is around two times the number of components.
This means that APX implicitly explores a set of solutions with a
size that is around the square of the number of solutions explored
by PX. According to the data in Table 1, this number is between
2254 = 1076 and 215 987 = 104 813.

Figure 7 shows the recombination graph for two local optima
during a run of DRILS+APX. For visualization purposes, we chose
one of the smallest recombination graphs we observed in the ex-
periments, for an instance with N = 105 variables and K = 2.

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
● ●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
● ●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

● ●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

● ●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

● ●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●

● ●●

●

●●

●

●

●
●

●

● ●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

● ●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 7: Example of recombination graph during a
DIRLS+APX run for an NK instance with N = 105 and K = 2,
showing the connected components and articulation points
(red nodes). The graph contains 858 components and 4 339
nodes, of which 1 825 are articulation points (42%).

4.2 Performance Comparison in NKQ
Landscapes

The goal of the second experiment is to determine when APX is
bene�cial when compared to the original PX. Table 2 shows in
the third and fourth columns the number of instances where each
algorithm (DRILS and DRILS+APX) statistically outperforms the
other. The �fth column reports the number of instances where there
is no statistically signi�cant di�erence between the algorithms. We
used the Mann-Whitney test for the comparison, and marked a
di�erence as signi�cant when the test reports a p-value below 0.05.

We can observe that DRILS+APX is statistically better than
DRILS in 40 instances, DRILS is better than DRILS+APX in 4 in-
stances and they are both similar in 36 instances.

Figure 8 shows the average �tness over time obtained by DRILS
and DRILS+APX for a concrete NKQ con�guration with N = 106

Table 2: Number of NKQ instances where any of the algo-
rithms statistically outperforms the other or the two are
similar. The average runtime of one execution of APX and
PX is also shown.

DRILS performance Runtime (ms)

N K APX PX Sim. APX PX

105

2 10 0 0 55 46
3 10 0 0 67 73
4 2 0 8 55 52
5 1 1 8 63 52

106

2 2 3 5 1 383 970
3 5 0 5 1 785 2 485
4 9 0 1 1 360 1 439
5 1 0 9 1 633 1 559

and K = 3 (average over 100 samples). We can clearly see how
DRILS+APX outperformed DRILS after a few seconds.

Columns sixth and seventh of Table 1 also report the average
runtime of one application of APX and PX. The numbers are in
the same order of magnitude although sometimes PX is faster and
sometimes is slower than APX. Thus, we can claim that the extra
computation does not have a big impact in the runtime.

Figure 8: Average �tness over time obtained by DRILS and
DRILS+APX in all the instances and all the runs of NKQ
Landscapes for N = 106 and K = 3.

4.3 Performance Comparison in MAX-SAT
We used the weighted and unweighted benchmarks for incomplete
solvers of the MAX-SAT Evaluation 20172. From the 194 instances
in the unweighted benchmark, our implementation worked with
160, running out of memory in the remaining 34 instances. In the
case of the weighted benchmark the implementation worked on 132
out of the 156 instances. This section reports the results obtained
over these 292 MAX-SAT instances. Table 3 reports the number of
instances where each algorithm statistically outperforms the other
2http://mse17.cs.helsinki.�/benchmarks.html.

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 23

Experimental Results
APX runtime is in the same order of magnitude than that of PX

GECCO ’18, July 15–19, 2018, Kyoto, Japan F. Chicano et al.

P����. According to Eq. (6), each connected component with
articulation points contribute to the count with an additional factor
of

⇣
1 � eC +

Õ
a2AP (C)(2da � 1)

⌘
. We can easily compute a lower

bound of this expression by considering that da � 2 (a direct conse-
quence of the de�nition of articulation point) and eC |AP(C)| � 1.
The latter can be explained by the fact that articulation points and
biconnected components (the subgraphs in between) form a tree [5].
The maximum number of edges joining two articulation points is
the number of edges of a tree formed by the articulation points,
and this is |AP(C)| � 1. Thus, we have 2da � 1 � 3 and

©≠
´
1 � eC +

’
a2AP (C)

(2da � 1)™Æ
¨
� (1 � eC + 3|AP(C)|)

� (1 � |AP(C)| + 1 + 3|AP(C)|)
� 2(1 + |AP(C)|),

what �nishes the proof. ⇤

Equation (8) clearly shows that the number of implicitly explored
solutions is much higher than that of PX. In APX, each connected
component with articulation points contributes with an additional
factor to the count of explored solutions of, at least, 2(1 + |AP(C)|).
This means, that any connected component with one articulation
point, increases the count in, at least, a factor of 4 compared to PX.
A component with two articulation points increases the count in,
at least, a factor of 6 compared to PX.

The computation of the best articulation point to remove (if
any) and the best decision for each sub-component in a connected
component of the recombination graph can be done during the DFS
exploration. The computation e�ort required to do this analysis
only increases the time in a constant factor compared to PX. There
is no change in the asymptotic behaviour of the operator run time,
which isO(N) for k-bounded pseudo-Boolean functions andO(N 2)
in the general case.

4 EXPERIMENTS
In order to experimentally analyze the performance of APX, we
included it in the Deterministic Recombination and Iterated Local
Search (DRILS) algorithm. DRILS [1] uses a �rst improving move
hill climber to reach a local optimum. Then, it perturbs the solution
by randomly �ipping �N bits, where � is the so-called perturbation
factor. It then applies local search to the new solution to reach
another local optimum and applies Partition Crossover to the last
two local optima, generating a new solution that is improved further
with the hill climber. This process is repeated until a time limit is
reached. The pseudocode is shown in Algorithm 1.

In addition to the original DRILS algorithm, we implement a vari-
ant where the Partition Crossover operator in Line 4 of Algorithm 1
is replaced by APX. This version is called DRILS+APX in the rest
of the paper. In all the runs we set a time limit of 60s (1 minute).
Since the algorithms are stochastic, we performed 10 independent
runs for each instance and algorithm. We used NP-hard problems to
measure the performance of APX: Random NKQ Landscapes with
K � 2 and MAX-SAT.

The computer used for the experiments is a multicore machine
with four Intel Xeon CPU (E5-2670 v3) at 2.3 GHz, a total of 48

Algorithm 1 DRILS

1: current hillClimber(random());
2: while not stopping condition do
3: next hillClimber (perturb(current));
4: child PX(current, next);
5: if child = current or child = next then
6: current next;
7: else
8: current hillClimber(child);
9: end if
10: end while

cores, 64 GB of memory and Ubuntu 16.04 LTS. The memory
usage was limited to 3GB during all the executions. The source
code of DRILS and DRILS+APX is available at https://github.com/
jfrchicanog/E�cientHillClimbers.

4.1 APX Statistics
In a �rst experiment, we compute statistics about the new opera-
tor. In particular, we count the number of connected components
identi�ed in the recombination graph, the number of articulation
points, the number of connected sub-components joined by the
articulation points (da), and the number of explored solutions in
one recombination. To collect these data, we used random NKQ
Landscapes, where N = 105 variables and N = 106 variables, K
goes from 2 to 5 andQ = 64. For each combination of the parameter
N and K we generated 10 random instances and run DRILS+APX
10 times. The perturbation factor (�) in DRILS was set to � = 0.05
in the case K = 2, 3 and � = 0.01 in the case K = 4, 5. These values
were taken from the recommendations in [1].

Table 1 shows averages over all the recombinations appearing
in all the runs for each combination of N and K . In the case of the
number of explored solutions, we compute the binary logarithm
and provide the average. This makes it possible to easily compare
the number of solutions explored by APX and PX, since the number
of components (third column) is the binary logarithm of the number
of solutions explored by PX.

Table 1: APX Statistics.

N K #Comp. #APs da log2 E(x ,�)

105

2 662 687 2.25 1 311
3 503 1 151 2.37 1 105
4 138 196 2.33 286
5 119 218 2.36 254

106

2 7 774 10 836 2.28 15 987
3 4 515 21 793 2.35 9 454
4 1 748 6 281 2.38 3 907
5 1 105 7 207 2.34 2 341

We can observe in Table 1 that the number of articulation points
can be similar to the number of components, but it can also be
several times larger, indicating that each connected component can

Enhancing Partition Crossover with Articulation Points Analysis GECCO ’18, July 15–19, 2018, Kyoto, Japan

have several articulation points. The trend in the number of articu-
lation points is not as clear as the number of components. While the
number of components decrease with K , the number of articulation
points can increase or decrease with K . The average degree of the
articulation points is slightly larger than 2 (its minimum value). It is
not common to see high degrees; the maximum value we observed
in the experiments was 13. High values are more probable when K

is high. Regarding the number of explored solutions, we observe
that the logarithm is around two times the number of components.
This means that APX implicitly explores a set of solutions with a
size that is around the square of the number of solutions explored
by PX. According to the data in Table 1, this number is between
2254 = 1076 and 215 987 = 104 813.

Figure 7 shows the recombination graph for two local optima
during a run of DRILS+APX. For visualization purposes, we chose
one of the smallest recombination graphs we observed in the ex-
periments, for an instance with N = 105 variables and K = 2.

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
● ●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
● ●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

● ●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

● ●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

● ●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●

● ●●

●

●●

●

●

●
●

●

● ●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

● ●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 7: Example of recombination graph during a
DIRLS+APX run for an NK instance with N = 105 and K = 2,
showing the connected components and articulation points
(red nodes). The graph contains 858 components and 4 339
nodes, of which 1 825 are articulation points (42%).

4.2 Performance Comparison in NKQ
Landscapes

The goal of the second experiment is to determine when APX is
bene�cial when compared to the original PX. Table 2 shows in
the third and fourth columns the number of instances where each
algorithm (DRILS and DRILS+APX) statistically outperforms the
other. The �fth column reports the number of instances where there
is no statistically signi�cant di�erence between the algorithms. We
used the Mann-Whitney test for the comparison, and marked a
di�erence as signi�cant when the test reports a p-value below 0.05.

We can observe that DRILS+APX is statistically better than
DRILS in 40 instances, DRILS is better than DRILS+APX in 4 in-
stances and they are both similar in 36 instances.

Figure 8 shows the average �tness over time obtained by DRILS
and DRILS+APX for a concrete NKQ con�guration with N = 106

Table 2: Number of NKQ instances where any of the algo-
rithms statistically outperforms the other or the two are
similar. The average runtime of one execution of APX and
PX is also shown.

DRILS performance Runtime (ms)

N K APX PX Sim. APX PX

105

2 10 0 0 55 46
3 10 0 0 67 73
4 2 0 8 55 52
5 1 1 8 63 52

106

2 2 3 5 1 383 970
3 5 0 5 1 785 2 485
4 9 0 1 1 360 1 439
5 1 0 9 1 633 1 559

and K = 3 (average over 100 samples). We can clearly see how
DRILS+APX outperformed DRILS after a few seconds.

Columns sixth and seventh of Table 1 also report the average
runtime of one application of APX and PX. The numbers are in
the same order of magnitude although sometimes PX is faster and
sometimes is slower than APX. Thus, we can claim that the extra
computation does not have a big impact in the runtime.

Figure 8: Average �tness over time obtained by DRILS and
DRILS+APX in all the instances and all the runs of NKQ
Landscapes for N = 106 and K = 3.

4.3 Performance Comparison in MAX-SAT
We used the weighted and unweighted benchmarks for incomplete
solvers of the MAX-SAT Evaluation 20172. From the 194 instances
in the unweighted benchmark, our implementation worked with
160, running out of memory in the remaining 34 instances. In the
case of the weighted benchmark the implementation worked on 132
out of the 156 instances. This section reports the results obtained
over these 292 MAX-SAT instances. Table 3 reports the number of
instances where each algorithm statistically outperforms the other
2http://mse17.cs.helsinki.�/benchmarks.html.

24515≈101359 solutions: 101349 ≈ (1080)16 solutions per nanosecond

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 24

Experimental Results
APX runtime is in the same order of magnitude than that of PX

y = 2,06x + 65,302

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

lo
g 2

E(
x,

y)

Components

Number of Explored Solutions (APX vs. PX)

GECCO ’18, July 15–19, 2018, Kyoto, Japan F. Chicano et al.

P����. According to Eq. (6), each connected component with
articulation points contribute to the count with an additional factor
of

⇣
1 � eC +

Õ
a2AP (C)(2da � 1)

⌘
. We can easily compute a lower

bound of this expression by considering that da � 2 (a direct conse-
quence of the de�nition of articulation point) and eC |AP(C)| � 1.
The latter can be explained by the fact that articulation points and
biconnected components (the subgraphs in between) form a tree [5].
The maximum number of edges joining two articulation points is
the number of edges of a tree formed by the articulation points,
and this is |AP(C)| � 1. Thus, we have 2da � 1 � 3 and

©≠
´
1 � eC +

’
a2AP (C)

(2da � 1)™Æ
¨
� (1 � eC + 3|AP(C)|)

� (1 � |AP(C)| + 1 + 3|AP(C)|)
� 2(1 + |AP(C)|),

what �nishes the proof. ⇤

Equation (8) clearly shows that the number of implicitly explored
solutions is much higher than that of PX. In APX, each connected
component with articulation points contributes with an additional
factor to the count of explored solutions of, at least, 2(1 + |AP(C)|).
This means, that any connected component with one articulation
point, increases the count in, at least, a factor of 4 compared to PX.
A component with two articulation points increases the count in,
at least, a factor of 6 compared to PX.

The computation of the best articulation point to remove (if
any) and the best decision for each sub-component in a connected
component of the recombination graph can be done during the DFS
exploration. The computation e�ort required to do this analysis
only increases the time in a constant factor compared to PX. There
is no change in the asymptotic behaviour of the operator run time,
which isO(N) for k-bounded pseudo-Boolean functions andO(N 2)
in the general case.

4 EXPERIMENTS
In order to experimentally analyze the performance of APX, we
included it in the Deterministic Recombination and Iterated Local
Search (DRILS) algorithm. DRILS [1] uses a �rst improving move
hill climber to reach a local optimum. Then, it perturbs the solution
by randomly �ipping �N bits, where � is the so-called perturbation
factor. It then applies local search to the new solution to reach
another local optimum and applies Partition Crossover to the last
two local optima, generating a new solution that is improved further
with the hill climber. This process is repeated until a time limit is
reached. The pseudocode is shown in Algorithm 1.

In addition to the original DRILS algorithm, we implement a vari-
ant where the Partition Crossover operator in Line 4 of Algorithm 1
is replaced by APX. This version is called DRILS+APX in the rest
of the paper. In all the runs we set a time limit of 60s (1 minute).
Since the algorithms are stochastic, we performed 10 independent
runs for each instance and algorithm. We used NP-hard problems to
measure the performance of APX: Random NKQ Landscapes with
K � 2 and MAX-SAT.

The computer used for the experiments is a multicore machine
with four Intel Xeon CPU (E5-2670 v3) at 2.3 GHz, a total of 48

Algorithm 1 DRILS

1: current hillClimber(random());
2: while not stopping condition do
3: next hillClimber (perturb(current));
4: child PX(current, next);
5: if child = current or child = next then
6: current next;
7: else
8: current hillClimber(child);
9: end if
10: end while

cores, 64 GB of memory and Ubuntu 16.04 LTS. The memory
usage was limited to 3GB during all the executions. The source
code of DRILS and DRILS+APX is available at https://github.com/
jfrchicanog/E�cientHillClimbers.

4.1 APX Statistics
In a �rst experiment, we compute statistics about the new opera-
tor. In particular, we count the number of connected components
identi�ed in the recombination graph, the number of articulation
points, the number of connected sub-components joined by the
articulation points (da), and the number of explored solutions in
one recombination. To collect these data, we used random NKQ
Landscapes, where N = 105 variables and N = 106 variables, K
goes from 2 to 5 andQ = 64. For each combination of the parameter
N and K we generated 10 random instances and run DRILS+APX
10 times. The perturbation factor (�) in DRILS was set to � = 0.05
in the case K = 2, 3 and � = 0.01 in the case K = 4, 5. These values
were taken from the recommendations in [1].

Table 1 shows averages over all the recombinations appearing
in all the runs for each combination of N and K . In the case of the
number of explored solutions, we compute the binary logarithm
and provide the average. This makes it possible to easily compare
the number of solutions explored by APX and PX, since the number
of components (third column) is the binary logarithm of the number
of solutions explored by PX.

Table 1: APX Statistics.

N K #Comp. #APs da log2 E(x ,�)

105

2 662 687 2.25 1 311
3 503 1 151 2.37 1 105
4 138 196 2.33 286
5 119 218 2.36 254

106

2 7 774 10 836 2.28 15 987
3 4 515 21 793 2.35 9 454
4 1 748 6 281 2.38 3 907
5 1 105 7 207 2.34 2 341

We can observe in Table 1 that the number of articulation points
can be similar to the number of components, but it can also be
several times larger, indicating that each connected component can

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 25

Experimental Results
APX runtime is in the same order of magnitude than that of PX

y = 2,06x + 65,302

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

lo
g 2

E(
x,

y)

Components

Number of Explored Solutions (APX vs. PX)

|PX|

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 26

Experimental Results
APX runtime is in the same order of magnitude than that of PX and the number of
solutions explored is squared!

|APX| ≈ |PX|2y = 2,06x + 65,302

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

lo
g 2

E(
x,

y)

Components

Number of Explored Solutions (APX vs. PX)

|PX|

|APX|

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 27

Experimental Results
DRILS and DRILS+APX solving NKQ Landscapes

Enhancing Partition Crossover with Articulation Points Analysis GECCO ’18, July 15–19, 2018, Kyoto, Japan

have several articulation points. The trend in the number of articu-
lation points is not as clear as the number of components. While the
number of components decrease with K , the number of articulation
points can increase or decrease with K . The average degree of the
articulation points is slightly larger than 2 (its minimum value). It is
not common to see high degrees; the maximum value we observed
in the experiments was 13. High values are more probable when K

is high. Regarding the number of explored solutions, we observe
that the logarithm is around two times the number of components.
This means that APX implicitly explores a set of solutions with a
size that is around the square of the number of solutions explored
by PX. According to the data in Table 1, this number is between
2254 = 1076 and 215 987 = 104 813.

Figure 7 shows the recombination graph for two local optima
during a run of DRILS+APX. For visualization purposes, we chose
one of the smallest recombination graphs we observed in the ex-
periments, for an instance with N = 105 variables and K = 2.

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
● ●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
● ●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

● ●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

● ●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

● ●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●

● ●●

●

●●

●

●

●
●

●

● ●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

● ●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 7: Example of recombination graph during a
DIRLS+APX run for an NK instance with N = 105 and K = 2,
showing the connected components and articulation points
(red nodes). The graph contains 858 components and 4 339
nodes, of which 1 825 are articulation points (42%).

4.2 Performance Comparison in NKQ
Landscapes

The goal of the second experiment is to determine when APX is
bene�cial when compared to the original PX. Table 2 shows in
the third and fourth columns the number of instances where each
algorithm (DRILS and DRILS+APX) statistically outperforms the
other. The �fth column reports the number of instances where there
is no statistically signi�cant di�erence between the algorithms. We
used the Mann-Whitney test for the comparison, and marked a
di�erence as signi�cant when the test reports a p-value below 0.05.

We can observe that DRILS+APX is statistically better than
DRILS in 40 instances, DRILS is better than DRILS+APX in 4 in-
stances and they are both similar in 36 instances.

Figure 8 shows the average �tness over time obtained by DRILS
and DRILS+APX for a concrete NKQ con�guration with N = 106

Table 2: Number of NKQ instances where any of the algo-
rithms statistically outperforms the other or the two are
similar. The average runtime of one execution of APX and
PX is also shown.

DRILS performance Runtime (ms)

N K APX PX Sim. APX PX

105

2 10 0 0 55 46
3 10 0 0 67 73
4 2 0 8 55 52
5 1 1 8 63 52

106

2 2 3 5 1 383 970
3 5 0 5 1 785 2 485
4 9 0 1 1 360 1 439
5 1 0 9 1 633 1 559

and K = 3 (average over 100 samples). We can clearly see how
DRILS+APX outperformed DRILS after a few seconds.

Columns sixth and seventh of Table 1 also report the average
runtime of one application of APX and PX. The numbers are in
the same order of magnitude although sometimes PX is faster and
sometimes is slower than APX. Thus, we can claim that the extra
computation does not have a big impact in the runtime.

DRILS

DRILS+APX

0 10 20 30 40 50 60

4.55×107

4.60×107

4.65×107

4.70×107

Time (s)

A
ve
ra
ge
fit
ne
ss

Figure 8: Average �tness over time obtained by DRILS and
DRILS+APX in all the instances and all the runs of NKQ
Landscapes for N = 106 and K = 3.

4.3 Performance Comparison in MAX-SAT
We used the weighted and unweighted benchmarks for incomplete
solvers of the MAX-SAT Evaluation 20172. From the 194 instances
in the unweighted benchmark, our implementation worked with
160, running out of memory in the remaining 34 instances. In the
case of the weighted benchmark the implementation worked on 132
out of the 156 instances. This section reports the results obtained
over these 292 MAX-SAT instances. Table 3 reports the number of
instances where each algorithm statistically outperforms the other
2http://mse17.cs.helsinki.�/benchmarks.html.

Enhancing Partition Crossover with Articulation Points Analysis GECCO ’18, July 15–19, 2018, Kyoto, Japan

have several articulation points. The trend in the number of articu-
lation points is not as clear as the number of components. While the
number of components decrease with K , the number of articulation
points can increase or decrease with K . The average degree of the
articulation points is slightly larger than 2 (its minimum value). It is
not common to see high degrees; the maximum value we observed
in the experiments was 13. High values are more probable when K

is high. Regarding the number of explored solutions, we observe
that the logarithm is around two times the number of components.
This means that APX implicitly explores a set of solutions with a
size that is around the square of the number of solutions explored
by PX. According to the data in Table 1, this number is between
2254 = 1076 and 215 987 = 104 813.

Figure 7 shows the recombination graph for two local optima
during a run of DRILS+APX. For visualization purposes, we chose
one of the smallest recombination graphs we observed in the ex-
periments, for an instance with N = 105 variables and K = 2.

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
● ●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
● ●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

● ●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

● ●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

● ●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●

● ●●

●

●●

●

●

●
●

●

● ●
●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

● ●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 7: Example of recombination graph during a
DIRLS+APX run for an NK instance with N = 105 and K = 2,
showing the connected components and articulation points
(red nodes). The graph contains 858 components and 4 339
nodes, of which 1 825 are articulation points (42%).

4.2 Performance Comparison in NKQ
Landscapes

The goal of the second experiment is to determine when APX is
bene�cial when compared to the original PX. Table 2 shows in
the third and fourth columns the number of instances where each
algorithm (DRILS and DRILS+APX) statistically outperforms the
other. The �fth column reports the number of instances where there
is no statistically signi�cant di�erence between the algorithms. We
used the Mann-Whitney test for the comparison, and marked a
di�erence as signi�cant when the test reports a p-value below 0.05.

We can observe that DRILS+APX is statistically better than
DRILS in 40 instances, DRILS is better than DRILS+APX in 4 in-
stances and they are both similar in 36 instances.

Figure 8 shows the average �tness over time obtained by DRILS
and DRILS+APX for a concrete NKQ con�guration with N = 106

Table 2: Number of NKQ instances where any of the algo-
rithms statistically outperforms the other or the two are
similar. The average runtime of one execution of APX and
PX is also shown.

DRILS performance Runtime (ms)

N K APX PX Sim. APX PX

105

2 10 0 0 55 46
3 10 0 0 67 73
4 2 0 8 55 52
5 1 1 8 63 52

106

2 2 3 5 1 383 970
3 5 0 5 1 785 2 485
4 9 0 1 1 360 1 439
5 1 0 9 1 633 1 559

and K = 3 (average over 100 samples). We can clearly see how
DRILS+APX outperformed DRILS after a few seconds.

Columns sixth and seventh of Table 1 also report the average
runtime of one application of APX and PX. The numbers are in
the same order of magnitude although sometimes PX is faster and
sometimes is slower than APX. Thus, we can claim that the extra
computation does not have a big impact in the runtime.

Figure 8: Average �tness over time obtained by DRILS and
DRILS+APX in all the instances and all the runs of NKQ
Landscapes for N = 106 and K = 3.

4.3 Performance Comparison in MAX-SAT
We used the weighted and unweighted benchmarks for incomplete
solvers of the MAX-SAT Evaluation 20172. From the 194 instances
in the unweighted benchmark, our implementation worked with
160, running out of memory in the remaining 34 instances. In the
case of the weighted benchmark the implementation worked on 132
out of the 156 instances. This section reports the results obtained
over these 292 MAX-SAT instances. Table 3 reports the number of
instances where each algorithm statistically outperforms the other
2http://mse17.cs.helsinki.�/benchmarks.html.

N=1 Million K=3

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 28

Experimental Results
DRILS and DRILS+APX solving MAX-SAT (instances from MAX-SAT Evaluation 2017)

GECCO ’18, July 15–19, 2018, Kyoto, Japan F. Chicano et al.

(columns three and four). The �fth column reports the number of
instances where there is no statistically signi�cant di�erence (using
Mann-Whitney with signi�cance level 0.05) between the algorithms.
Three di�erent values for the perturbation factor (�) were used:
0.10, 0.20 and 0.30.

Table 3: Number of MAX-SAT instances where any of the
algorithms statistically outperforms the other or the two are
similar. The last two columns report the runtime ofAPXand
PX.

DRILS performance Runtime (µs)

Instances � APX PX Sim. APX PX

Unweighted
0.10 78 1 81 463 454
0.20 82 2 75 684 729
0.30 85 2 73 849 1 060

Weighted
0.10 26 19 87 1 425 882
0.20 49 14 69 1 859 1 416
0.30 77 5 50 2 365 1 713

DRILS+APX seems to be better in the unweighted instances than
in the weighted ones, compared to DRILS. Unweighted instances are
expected to have more plateaus than weighted ones, and plateaus
seem to be problematic for the traditional PX. We also observe that
DRILS+APX outperforms DRILS more clearly for higher values of
the perturbation factor. The runtime of APX and PX is similar in
order of magnitude (hundreds of microseconds), but it is higher in
the case of APX for the weighted instances. This is an indication that
the work spent in the analysis of articulation points is not useful
most of the time for these instances. In the unweighted instances,
the runtime of APX is lower than that of PX for a high value of the
perturbation factor.

5 CONCLUSIONS
We propose an improved version of Partition Crossover, Articula-
tion Points Partition Crossover (APX). This new operator increases
the number of explored solutions in an exponential factor with just
a small constant increment in computational time. The core idea
of APX is to �ip variables in the parent solutions that are articu-
lation points in the recombination graph. As a result, the number
of connected components increases, and the variables in the new
components can be selected from one of the parents independently
of the other components. Empirical results on both Random NKQ

Landscapes and MAX-SAT provide evidence that the new APX op-
erator increases the performance of a recent state-of-the-art search
Gray-Box algorithm for pseudo-Boolean optimization.

Future work on APX includes a detailed analysis of the possi-
bility of �ipping more than one articulation point per connected
component. We have included APX in one particular algorithm
(DRILS), but the operator is independent of the algorithm and can
be included in GAs. Regarding DRILS, we can use the information
of the recombination graph and articulation points to guide the
random walk after �nding a local optimum. In particular, this guide
could be essential in plateaus, a scenario for which preliminary
theoretical results on APX provide an encouraging message.

ACKNOWLEDGEMENTS
Funding was provided by the Fulbright program, the Spanish Min-
istry of Education, Culture and Sport (CAS12/00274), the Spanish
Ministry of Economy and Competitiveness and FEDER (TIN2014-
57341-R and TIN2017-88213-R), the University of Málaga, Andalucía
Tech, the Air Force O�ce of Scienti�c Research, (FA9550-11-1-0088),
the Leverhulme Trust (RPG-2015-395), the FAPESP (2015/06462-1)
and CNPq (304400/2014-9).

REFERENCES
[1] Francisco Chicano, Darrell Whitley, Gabriela Ochoa, and Renato Tinós. 2017.

Optimizing one million variable NK landscapes by hybridizing deterministic re-
combination and local search. In Genetic and Evolutionary Computation Conference,
GECCO 2017. 753–760. https://doi.org/10.1145/3071178.3071285

[2] Francisco Chicano, Darrell Whitley, and Andrew M. Sutton. 2014. E�cient
identi�cation of improving moves in a ball for pseudo-boolean problems. In
Genetic and Evolutionary Computation Conference, GECCO ’14, Vancouver, BC,
Canada, July 12-16, 2014, Dirk V. Arnold (Ed.). ACM, ACM, NY, USA, 437–444.
https://doi.org/10.1145/2576768.2598304

[3] Robert B. Heckendorn, Soraya Rana, and Darrell Whitley. 1999. Polynomial
Time Summary Statistics for a Generalization of MAXSAT. In Proceedings of
the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 1
(GECCO’99). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 281–288.
http://dl.acm.org/citation.cfm?id=2933923.2933952

[4] M. E. J. Newman and Robin Engelhardt. 1998. E�ect of neutral selection on the
evolution of molecular species. Proc. R. Soc. London B (1998), 1333–1338.

[5] Robert Tarjan. 1972. Depth-First Search and Linear Graph Algorithms. SIAM
Journal of Computing 1, 2 (1972), 146–160.

[6] Renato Tinós, Darrell Whitley, and Francisco Chicano. 2015. Partition Crossover
for Pseudo-Boolean Optimization. In Proceedings of the 2015 ACM Conference on
Foundations of Genetic Algorithms XIII (FOGA ’15). ACM, New York, NY, USA,
137–149. https://doi.org/10.1145/2725494.2725497

[7] Darrell Whitley, Francisco Chicano, and Brian W. Goldman. 2016. Gray Box
Optimization for Mk Landscapes (NK Landscapes and MAX-kSAT). Evolutionary
Computation 24 (Jan-09-2016 2016), 491 – 519. https://doi.org/10.1162/EVCO_a_
00184

[8] Darrell Whitley, Doug Hains, and Adele Howe. 2009. Tunneling Between Optima:
Partition Crossover for the Traveling Salesman Problem. In Proceedings of the 11th
Annual Conference on Genetic and Evolutionary Computation (GECCO ’09). ACM,
New York, NY, USA, 915–922. https://doi.org/10.1145/1569901.1570026

[9] Alden Wright, Richard Thompson, and Jian Zhang. 2000. The computational
complexity of NK �tness functions. IEEE Transactions on Evolutionary Computation
4, 4 (2000), 373–379.

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 29

Source Code in GitHub
https://github.com/jfrchicanog/EfficientHillClimbers

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 30

Conclusions
• The Variable Interaction Graph provides useful information to improve the search

• Articulation Points Partition Crossover squares the number of solutions considered by
PX in around the same time

• APX is specially good in Unweighted MAX-SAT instances (many plateaus)

• Take home message: use Gray-Box Optimization if you can

• Plateaus exploration in MAX-SAT guided by APX

• New ways of perturbing the solution to maximize the components in (A)PX

• Look at the Variable Interaction Graph of industrial problems

Future Work

Enhancing Partition Crossover with Articulation Points Analysis

GECCO 2018, 15-19 July, Kyoto, Japan 31

Acknowledgements2. ELEMENTOS DE LA IDENTIDAD

2.2. Versiones de la marca Universidad de Málaga

Esta actualización del manual recoge el uso horizontal de la marca UNIVERSIDAD
DE MÁLAGA tal y como se muestra en la imagen. También se ha corregido el uso
negativo del escudo. En esta versión se respeta el original diseño de la imagen de
“La Paloma”.

VERSIÓN HORIZONTAL EN POSITIVO VERSIÓN VERTICAL EN POSITIVO

VERSIÓN HORIZONTAL EN NEGATIVO VERSIÓN VERTICAL EN NEGATIVO

5

Thanks for your attention!!!

