

Enhancing Partition Crossover with Articulation Points Analysis

Francisco Chicano, Gabriela Ochoa, Darrell Whitley, Renato Tinós

UNIVERSIDAD DE MÁLAGA

Outline

- Gray-Box (vs. Black-Box) Optimization
- Partition Crossover and Articulation Points
- Deterministic Recombination and Iterated Local Search
- Experiments
- Conclusions and Future Work

Gray-Box (vs. Black-Box) Optimization

For most of real problems we know (almost) all the details

Gray-Box (vs. Black-Box) Optimization

For most of real problems we know (almost) all the details

Gray-Box structure: MK Landscapes

Variable Interaction

x_i and x_i interact when they appear together in the same subfunction*

Variable Interaction Graph (VIG)

If x_i and x_j don't interact: $\Delta_{ij} = \Delta_i + \Delta_j$

PX creates a graph with only the differing variables (recombination graph)

All the variables in a component are taken from the same parent

The contribution of each component to the fitness value of the offspring is independent of each other

FOGA 2015: Tinós, Whitley, C.

PX creates a graph with only the differing variables (recombination graph)

All the variables in a component are taken from the same parent

The contribution of each component to the fitness value of the offspring is independent of each other

FOGA 2015: Tinós, Whitley, C.

Articulation Points in a Graph

Articulation Points in a Graph

APX identifies articulation points in the recombination graph

It implicitly considers all the solutions PX would consider if one or none articulation point is removed from each connected component

All the analysis can be done using Tarjan's algorithm to find articulation points (DFS-like algorithm) : time complexity is the same as the original PX

The number of implicitly studied solutions is:

Degree of an articulation point in the recominbation graph

$$E(x, y) = 2^{|CC(G)|} \prod_{\substack{C \in CC(G) \\ |AP(C)| > 0}} \left(1 - e_C + \sum_{\substack{a \in AP(C) \\ a \in AP(C) \\ |a \in AP(C) \\$$

Deterministic Recombination and Iterated Local Search (DRILS)

An NK Landscape is a pseudo-Boolean optimization problem with objective function:

$$f(x) = \sum_{l=1}^{N} f^{(l)}(x)$$

where each subfunction $f^{(l)}$ depends on variable x_l and K other variables

MAX-SAT consists in finding an assignment of variables to Boolean (true and false) values such that the maximum number of clauses is satisfied

A clause is an OR of literals: $x_1 \vee \neg x_2 \vee x_3$

GECCO 2018, 15-19 July, Kyoto, Japan

Example for NKQ Landscapes with N=100 000 and K=2 (DRILS+APX)

There are 4339 nodes grouped in 858 components with 1825 articulation points (in red)

`

Experimental Results

APX runtime is in the same order of magnitude than that of **PX**

						Runtim	e (ms)
N	K	#Comp.	#APs	d_a	$\log_2 E(x,y)$	APX	PX
	2	662	687	2.25	1 311	55	46
105	3	503	1 1 5 1	2.37	1 105	67	73
10*	4	138	196	2.33	286	55	52
	5	119	218	2.36	254	63	52
	2	7 774	10 836	2.28	15 987	1 383	970
106	3	4 515	21 793	2.35	9 454	1 785	2485
10	4	1748	6 281	2.38	3 907	1 360	1 439
(5	1 105	7 207	2.34	2 341	1 633	1 559
2 ⁴⁵¹	^{∣5} ≈1() ¹³⁵⁹ soluti	ons: 10	¹³⁴⁹ ≈ ((10 ⁸⁰) ¹⁶ solution	s per nanos	econd

APX runtime is in the same order of magnitude than that of PX

N	K	#Comp.	#APs	d_a	$\log_2 E(x,y)$
	2	662	687	2.25	1 311
105	3	503	1 151	2.37	1 105
10	4	138	196	2.33	286
	5	119	218	2.36	254
10 ⁶	2	7 774	10 836	2.28	15 987
	3	4 515	21 793	2.35	9 454
	4	1 748	6 281	2.38	3 907
	5	1 105	7 207	2.34	2 341

APX runtime is in the same order of magnitude than that of PX

APX runtime is in the same order of magnitude than that of PX and the number of solutions explored is squared!

DRILS and DRILS+APX solving NKQ Landscapes

		DRILS	6 perfo	Run	Runtime (ms)		
Ν	K	APX	РХ	Sim.	APX	K PX	
	2	10	0	0	55	5 46	
105	3	10	0	0	67	7 73	
10	4	2	0	8	55	5 52	
	5	1	1	8	63	3 52	
	2	2	3	5	1 383	3 970	
10 ⁶	3	5	0	5	1 785	5 2 485	
	4	9	0	1	1 360) 1439	
	5	1	0	9	1 633	3 1 559	

GECCO 2018, 15-19 July, Kyoto, Japan

DRILS and DRILS+APX solving MAX-SAT (instances from MAX-SAT Evaluation 2017)

		DRILS	6 perfo	ormance	Rur	Runtime (µs)		
Instances	α	APX	РХ	Sim.	AP	X PX		
	0.10	78	1	81	46	3 454		
Unweighted	0.20	82	2	75	68	54 729		
	0.30	85	2	73	84	9 1060		
	0.10	26	19	87	1 42	5 882		
Weighted	0.20	49	14	69	185	1416		
	0.30	77	5	50	2 36	5 1713		

Source Code in GitHub

https://github.com/jfrchicanog/EfficientHillClimbers

Personal	Open source	Business	Explore	Pricing	Blog	Support	This repository	Search	Sign in	Sign up
📮 jfrchicanog /	EfficientHillC	limbers						⊙ Watch 1 ★ S	Star 0	ŸFork ⁰
Branch: master -			Create new file Find file History		E.md					

EfficientHillClimbers / src / main / java / neo / landscape / theory / apps / pseudoboolean /

n ifrehicanog GECCO 2017		Latest commit 5cb8053 14 hours ago
in exactsolvers	GECCO 2017	14 hours ago
in experiments	initial branch	14 hours ago
in hillclimbers	initial branch	14 hours ago
in parsers	initial branch	14 hours ago
in perturbations	initial branch	14 hours ago
in problems	initial branch	14 hours ago
in px	initial branch	14 hours ago
in util	initial branch	14 hours ago
E Driver.java	initial branch	14 hours ago
Experiments.java	initial branch	14 hours ago
AxNKStatistics.java	initial branch	14 hours ago
PBSolution.java	initial branch	14 hours ago
ParseResults.java	initial branch	14 hours ago

Gray-Box Optimization Operators and Algorithms

You can find in this repository the source code of the algorithms implemented for the scientific papers listed:

- Francisco Chicano, Gabriela Ochoa, Darrell Whitley and Renato Tinós, "Enhancing Partition Crossover with Articulation Points Analysis", GECCO 2018 (https://doi.org/10.1145/3205455.3205561)
- Francisco Chicano, Darrell Whitley, Gabriela Ochoa and Renato Tinós, "Optimizing One Million Variable NK Landscapes by Hybridizing Deterministic Recombination and Local Search", GECCO 2017 (https://doi.org/10.1145/3071178.3071285)
- Francisco Chicano, Darrell Whitley and Renato Tinós, "Efficient Hill Climber for Constrained Pseudo-Boolean Optimization Problems", GECCO 2016 (https://doi.org/10.1145/2908812.2908869)
- Francisco Chicano, Darrell Whitley and Renato Tinós, "Multi-Objective Pseudo-Boolean Optimization", EvoCOP 2016 (http://dx.doi.org/10.1007/978-3-319-30698-8_7)

In the following sections you will find instructions to run the algorithms in the papers. The name of the jar file generated by this commit is EfficientHillClimbers-0.7-GECCO2018.jar

Conclusions

- The Variable Interaction Graph provides useful information to improve the search
- Articulation Points Partition Crossover squares the number of solutions considered by PX in around the same time
- APX is specially good in Unweighted MAX-SAT instances (many plateaus)
- Take home message: use Gray-Box Optimization if you can

Future Work

- Plateaus exploration in MAX-SAT guided by APX
- New ways of perturbing the solution to maximize the components in (A)PX
- Look at the Variable Interaction Graph of industrial problems

Acknowledgements

GECCO 2018, 15-19 July, Kyoto, Japan