Gray-Box Optimization for Million
 Variable Pseudo-Boolean Problems

Francisco Chicano

Joint work with
Darrell Whitley, Renato Tinós, Gabriela Ochoa and Andrew M. Sutton

Outline

- Gray-Box (vs. Black-Box) Optimization
- Hamming Ball Hill Climber and Partition Crossover
- Deterministic Recombination and Iterated Local Search
- Experiments
- Conclusions and Future Work

Gray-Box (vs. Black-Box) Optimization

For most of real problems we know (almost) all the details

Gray-Box (vs. Black-Box) Optimization

For most of real problems we know (almost) all the details

Gray-Box (vs. Black-Box) Optimization

OneMax

$\theta(n / \log n)$
$\theta(1)$

Other $\boldsymbol{\theta}(1)$-solvable problems:

- Leading Ones
- Trap Functions
- Jump Functions
- Massively Multimodal Deceptive Problem

Gray-Box structure: MK Landscapes

$$
f(x)=\sum_{i=1}^{m} f^{(i)}(x) \quad \begin{gathered}
\text { All compresibl } \\
\text { functions can } \\
\text { this in pol }
\end{gathered}
$$

Example ($k=2$):

Variable Interaction

x_{i} and x_{j} interact when they appear together in the same subfunction*

Variable Interaction Graph (VIG)

If \mathbf{x}_{i} and x_{j} don't interact: $\Delta_{\mathrm{ij}}=\Delta_{\mathrm{i}}+\Delta_{\mathrm{j}}$

Hamming Ball Hill Climber (HBHC)

Identifying improving moves in a ball of radius r around solution x

Based on the concept of Score (delta evaluation): Δ_{v}
GECCO 2014: C., Whitley, Sutton

Partition Crossover (PX)

Let us suppose our function has the following VIG...

Partition Crossover (PX)

Let us suppose our function has the following VIG...

Partition Crossover (PX)

Let us suppose our function has the following VIG...

Partition Crossover (PX)

Let us suppose our function has the following VIG...

Partition Crossover (PX)

PX creates a graph with only the differing variables (recombination graph)

All the variables in a component are taken from the same parent
The contribution of each component to the fitness value of the offspring is independent of each other

FOGA 2015: Tinós, Whitley, C.

Partition Crossover (PX)

PX creates a graph with only the differing variables (recombination graph)

All the variables in a component are taken from the same parent
The contribution of each component to the fitness value of the offspring is independent of each other

FOGA 2015: Tinós, Whitley, C.

Articulation Points Partition Crossover (APX)

Let us suppose our function has the following VIG...

Articulation Points Partition Crossover (APX)

GECCO 2018: C., Ochoa, Whitley, Tinós

Articulation Points in a Graph

Articulation Points in a Graph

Articulation Points

Articulation Points Partition Crossover (APX)

APX identifies articulation points in the recombination graph

It implicitly considers all the solutions PX would consider if one or none articulation point is removed from each connected component
GECCO 2018: C., Ochoa, Whitley, Tinós

Articulation Points Partition Crossover (APX)

Example for NKQ Landscapes with N=100 000 and K=2 (DRILS+APX)

There are 4339 nodes grouped in 858 components with 1825 articulation points (in red)
GECCO 2018: C., Ochoa, Whitley, Tinós

Articulation Points Partition Crossover (APX)

The number of implicitly studied solutions is:
Degree of an articulation point in the recominbation graph

Articulation Points Partition Crossover (APX)

All the analysis can be done using Tarjan's algorithm to find articulation points (DFSlike algorithm) : time complexity is the same as the original PX

GECCO 2018: C., Ochoa, Whitley, Tinós

Deterministic Recombination and Iterated Local Search (DRILS)

Experimental Results

- An NK Landscape is a pseudo-Boolean optimization problem with objective function:

$$
f(x)=\sum_{l=1}^{N} f^{(l)}(x)
$$

where each subfunction $f^{\prime \prime}$ depends on variable x_{I} and K other variables

Experimental Results

1M variable adjacent NK Landscape with $\mathrm{K}=3$

Experimental Results

100,000 variable adjacent NK Landscape

$K=1$

$K=5$

GB-P3: Gray-Box Parameter-less Population Pyramid
GECCO 2015: Goldman, Punch

Experimental Results

100,000 variable random NK Landscape

$K=1$

$K=5$

Experimental Results

Average number of components found by Partition Crossover

	Perturbation Factor (α)					
K	0.005	0.01	0.05	0.10	0.15	
1	683	1,314	6,059	11,442	16,259	
2	967	1,772	6,938	11,426	13,428	
3	1,041	1,810	4,970	3,639	2,367	
4	993	1,657	1,780	661	301	
5	903	1,344	517	100	38	

24,970 solutions considered in each PX ($10^{1,485}$ solutions per nanosecond)

1M variable random NK Landscapes

Experimental Results

APX runtime is in the same order of magnitude than that of PX

N	K	\#Comp.	\#APs	d_{a}	$\log _{2} E(x, y)$
10^{5}	2	662	687	2.25	1311
	4	503	1151	2.37	1105
	5	138	196	2.33	286
	3	7774	10836	2.28	15987
	3	4515	21793	2.35	9454
	4	1748	6281	2.38	3907
	5	1105	7207	2.34	2341

Runtime (ms)	
APX	PX
55	46
67	73
55	52
63	52
1383	970
1785	2485
1360	1439
1633	1559

Experimental Results

APX runtime is in the same order of magnitude than that of $P X$ and the number of solutions explored is squared!

$|A P X| \approx|P X|^{2}$

N	K	\#Comp.	\#APs	d_{a}	$\log _{2} E(x, y)$
10^{5}	2	662	687	2.25	1311
	4	503	1151	2.37	1105
	5	138	196	2.33	286
	2	7774	218	2.36	254
	3	4515	21793	2.35	9454
	4	1748	6281	2.38	3907
	5	1105	7207	2.34	2341

Experimental Results

DRILS and DRILS+APX solving NKQ Landscapes with $\mathbf{N}=1$ Million and $\mathrm{K}=3$

Experimental Results

DRILS and DRILS+APX solving MAX-SAT (instances from MAX-SAT Evaluation 2017)

Instances	α	DRILS performance			Runtime ($\mu \mathrm{s}$)	
		APX	PX	Sim.	APX	PX
Unweighted	0.10	78	1	81	463	454
	0.20	82	2	75	684	729
	0.30	85	2	73	849	1060
Weighted	0.10	26	19	87	1425	882
	0.20	49	14	69	1859	1416
	0.30	77	5	50	2365	1713

Conclusions

- The Variable Interaction Graph provides useful information to improve the search
- Articulation Points Partition Crossover squares the number of solutions considered by $P X$ in around the same time
- APX is specially good in Unweighted MAX-SAT instances (many plateaus)
- Take home message: use Gray-Box Optimization if you can

Future Work

- Plateaus exploration in MAX-SAT guided by APX
- New ways of perturbing the solution to maximize the components in (A)PX
- Look at the Variable Interaction Graph of industrial problems

Enhancing Partition Crossover with Articulation Points Analysis

Acknowledgements

