

Gray-Box Optimization for Million Variable Pseudo-Boolean Problems

Francisco Chicano

Joint work with

Darrell Whitley, Renato Tinós, Gabriela Ochoa and Andrew M. Sutton

Outline

- Gray-Box (vs. Black-Box) Optimization
- Hamming Ball Hill Climber and Partition Crossover
- Deterministic Recombination and Iterated Local Search
- Experiments
- Conclusions and Future Work

Gray-Box (vs. Black-Box) Optimization

For most of real problems we know (almost) all the details

Gray-Box (vs. Black-Box) Optimization

For most of real problems we know (almost) all the details

Gray-Box (vs. Black-Box) Optimization

Other $\Theta(1)$ -solvable problems:

- Leading Ones
- Trap Functions
- Jump Functions
- Massively Multimodal Deceptive Problem

Gray-Box structure: MK Landscapes

Variable Interaction

x_i and x_i interact when they appear together in the same subfunction*

Variable Interaction Graph (VIG)

```
If x_i and x_j don't interact: \Delta_{ij} = \Delta_i + \Delta_j
```


Hamming Ball Hill Climber (HBHC)

Identifying improving moves in a ball of radius *r* around solution *x*

Based on the concept of Score (delta evaluation): Δ_v

GECCO 2014: C., Whitley, Sutton

PX creates a graph with only the differing variables (recombination graph)

All the variables in a component are taken from the same parent

The contribution of each component to the fitness value of the offspring is independent of each other

FOGA 2015: Tinós, Whitley, C.

PX creates a graph with only the differing variables (recombination graph)

All the variables in a component are taken from the same parent

The contribution of each component to the fitness value of the offspring is independent of each other

FOGA 2015: Tinós, Whitley, C.

GECCO 2018: C., Ochoa, Whitley, Tinós

Articulation Points in a Graph

Articulation Points in a Graph

APX identifies articulation points in the recombination graph

It implicitly considers all the solutions PX would consider if one or none articulation point is removed from each connected component

GECCO 2018: C., Ochoa, Whitley, Tinós

Example for NKQ Landscapes with N=100 000 and K=2 (DRILS+APX)

There are 4339 nodes grouped in 858 components with 1825 articulation points (in red)

GECCO 2018: C., Ochoa, Whitley, Tinós

The number of implicitly studied solutions is:

Degree of an articulation point in the recominbation graph

CIMO 2018

$$E(x, y) = 2^{|CC(G)|} \prod_{\substack{C \in CC(G) \\ |AP(C)| > 0}} \left(1 - e_C + \sum_{\substack{a \in AP(C) \\ a \in AP(C) \\ |a \in AP(C) \\$$

All the analysis can be done using Tarjan's algorithm to find articulation points (DFS-like algorithm) : time complexity is the same as the original PX

GECCO 2018: C., Ochoa, Whitley, Tinós

Deterministic Recombination and Iterated Local Search (DRILS)

• An NK Landscape is a pseudo-Boolean optimization problem with objective function:

$$f(x) = \sum_{l=1}^{N} f^{(l)}(x)$$

where each subfunction $f^{(l)}$ depends on variable x_l and K other variables

1M variable adjacent NK Landscape with K=3

100,000 variable adjacent NK Landscape

GB-P3: Gray-Box Parameter-less Population Pyramid

GECCO 2015: Goldman, Punch

100,000 variable random NK Landscape

Experimental Results

Average number of components found by Partition Crossover

Perturbation Factor (α)							
K	0.005	0.01	0.05	0.10	0.15		
1	683	1,314	6,059	11,442	16,259		
2	967	1,772	6,938	11,426	13,428		
3	1,041	1,810	4,970	3,639	2,367		
4	993	1,657	1,780	661	301		
5	903	1,344	517	100	38		

2^{4,970} solutions considered in each PX (10^{1,485} solutions per nanosecond)

1M variable random NK Landscapes

APX runtime is in the same order of magnitude than that of PX

						Runtime (ms)	
N	K	#Comp.	#APs	d_a	$\log_2 E(x,y)$	 APX	PX
	2	662	687	2.25	1 311	55	46
10^{5}	3	503	1 151	2.37	1 105	67	73
10-	4	138	196	2.33	286	55	52
	5	119	218	2.36	254	 63	52
	2	7 774	10 836	2.28	15 987	1 383	970
10 ⁶	3	4 515	21 793	2.35	9 4 5 4	1 785	2485
	4	1 748	6 281	2.38	3 907	1 360	1 439
	5	1 105	7 207	2.34	2 3 4 1	 1 633	1 559

APX runtime is in the same order of magnitude than that of PX and the number of solutions explored is squared!

 $|APX| \approx |PX|^2$

Ν	Κ	#Comp.	#APs	d_a	$\log_2 E(x,y)$
	2	662	687	2.25	1 311
10 ⁵	3	503	1 151	2.37	1 105
10	4	138	196	2.33	286
	5	119	218	2.36	254
	2	7 774	10 836	2.28	15 987
10 ⁶	3	4 5 1 5	21 793	2.35	9 454
10	4	1 748	6 281	2.38	3 907
	5	1 105	7 207	2.34	2 3 4 1

DRILS and DRILS+APX solving NKQ Landscapes with N=1 Million and K=3

DRILS and DRILS+APX solving MAX-SAT (instances from MAX-SAT Evaluation 2017)

		DRILS performance			Runtir	Runtime (µs)	
Instances	α	APX	РХ	Sim.	APX	РХ	
	0.10	78	1	81	463	454	
Unweighted	0.20	82	2	75	684	729	
	0.30	85	2	73	849	1 060	
	0.10	26	19	87	1 425	882	
Weighted	0.20	49	14	69	1 859	1 4 1 6	
	0.30	77	5	50	2 365	1713	

Conclusions

- The Variable Interaction Graph provides useful information to improve the search
- Articulation Points Partition Crossover squares the number of solutions considered by PX in around the same time
- APX is specially good in Unweighted MAX-SAT instances (many plateaus)
- Take home message: use Gray-Box Optimization if you can

Future Work

- Plateaus exploration in MAX-SAT guided by APX
- New ways of perturbing the solution to maximize the components in (A)PX
- Look at the Variable Interaction Graph of industrial problems

Enhancing Partition Crossover with Articulation Points Analysis

Francisco Chicano, Gabriela Ochoa, Darrell Whitley, Renato Tinos

ECOM

2018-07-18 2 10:40-11:05 Terrsa Hall (1F)

Paper candidate

Acknowledgements

CIMO 2018, 12-13 July, Nagano, Japan