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Gray-Box (vs. Black-Box) Optimization

x f(x)

x f(x) For most of real problems we
know (almost) all the details
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Gray-Box (vs. Black-Box) Optimization

x f(x)

x f(x)

OneMax

!(n/log n)

!(1)

Other !(1)-solvable problems: 

• Leading Ones

• Trap Functions

• Jump Functions

• Massively Multimodal Deceptive Problem
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Gray-Box structure: MK Landscapes

Example (k=2):

f =  + + + f(1)(x) f(2)(x) f(3)(x) f(4)(x) 

x1 x2 x3 x4 

derivative, they reduce the time needed to identify improv-
ing moves from O(k22k) to O(k3). In addition, the new
approach avoids the use of the Walsh transform, making the
approach conceptually simpler.

In this paper, we generalize this result to present a local
search algorithm that can look r moves ahead and iden-
tify all improving moves. This means that moves are being
identified in a neighborhood containing all solutions that lie
within a Hamming ball of radius r around the current so-
lution. We assume that r = O(1). If r ⌧ n, the number
of solutions in such a neighborhood is ⇥(nr). New improv-
ing moves located up to r moves away can be identified in
constant time. The memory required by our approach is
O(n). To achieve O(1) time per move, the number of sub-
functions in which any variable appears must be bounded by
some constant c. We then prove that the resulting algorithm
requires O((3kc)rn) space to track potential moves.

In order to evaluate our approach we perform an experi-
mental study based on NKq-landscapes. The results reveal
not only that the time required by the next ascent is inde-
pendent of n, but also that increasing r we obtain a signifi-
cant gain in the quality of the solutions found.

The rest of the paper is organized as follows. In the next
section we introduce the pseudo-Boolean optimization prob-
lems. Section 3 defines the“Scores”of a solution and provide
an algorithm to e�ciently update them during a local search
algorithm. We propose in Section 4 a next ascent hill climber
with the ability to identify improving moves in a ball of ra-
dius r in constant time. Section 5 empirically analyzes this
hill climber using NKq-landscapes instances and Section 6
outlines some conclusions and future work.

2. PSEUDO-BOOLEAN OPTIMIZATION
Our method for identifying improving moves in the radius

r Hamming ball can be applied to all k-bounded pseudo-
Boolean Optimization problems. This makes our method
quite general: every compressible pseudo-Boolean Optimiza-
tion problem can be transformed into a quadratic pseudo-
Boolean Optimization problem with k = 2.

The family of k-bounded pseudo-Boolean Optimization
problems have also been described as an embedded landscape.
An embedded landscape [3] with bounded epistasis k is de-
fined as a function f(x) that can be written as the sum
of m subfunctions, each one depending at most on k input
variables. That is:

f(x) =
mX

i=1

f
(i)(x), (1)

where the subfunctions f
(i) depend only on k components

of x. Embedded Landscapes generalize NK-landscapes and
the MAX-kSAT problem. We will consider in this paper that
the number of subfunctions is linear in n, that is m 2 O(n).
For NK-landscapes m = n and is a common assumption in
MAX-kSAT that m 2 O(n).

3. SCORES IN THE HAMMING BALL
For v, x 2 Bn, and a pseudo-Boolean function f : Bn ! R,

we denote the Score of x with respect to move v as Sv(x),
defined as follows:1

Sv(x) = f(x� v)� f(x), (2)
1We omit the function f in Sv(x) to simplify the notation.

where � denotes the exclusive OR bitwise operation. The
Score Sv(x) is the change in the objective function when we
move from solution x to solution x� v, that is obtained by
flipping in x all the bits that are 1 in v.
All possible Scores for strings v with |v|  r must be

stored as a vector. The Score vector is updated as local
search moves from one solution to another. This makes it
possible to know where the improving moves are in a ball of
radius r around the current solution. For next ascent, all of
the improving moves can be bu↵ered. An approximate form
of steepest ascent local search can be implemented using
multiple bu↵ers [9].
If we naively use equation (2) to explicitly update this

Score vector, we will have to evaluate all
Pr

i=0

�
n
i

�
neigh-

bors in the Hamming ball. Instead, if the objective function
satisfies some requirements described below, we can design
an e�cient next ascent hill climber for the radius r neigh-
borhood that only stores a linear number of Score values and
requires a constant time to update them. We next explain
the theoretical foundations of this next ascent hill climber.
The first requirement for the objective function is that it

must be written such that each subfunction depends only on
k Boolean variables of x (k-bounded epistasis). In this case,
we can write the scoring function Sv(x) as an embedded
landscape:

Sv(x) =
mX

l=1

⇣
f
(l)(x� v)� f

(l)(x)
⌘
=

mX

l=1

S
(l)
v (x), (3)

where we use S
(l)
v to represent the scoring functions of the

subfunctions f (l). Let us define wl 2 Bn as the binary string
such that the i-th element of wl is 1 if and only if f (l) depends
on variable xi. The vector wl can be considered as a mask
that characterizes the variables that a↵ect f

(l). Since f
(l)

has bounded epistasis k, the number of ones in wl, denoted
with |wl|, is at most k. By the definition of wl, the next
equalities immediately follow.

f
(l)(x� v) = f

(l)(x) for all v 2 Bn with v ^ wl = 0, (4)

S
(l)
v (x) =

⇢
0 if wl ^ v = 0,

S
(l)
v^wl

(x) otherwise.
(5)

Equation (5) claims that if none of the variables that
change in the move characterized by v is an argument of
f
(l) the Score of this subfunction is zero, since the value of

this subfunction will not change from f
(l)(x) to f

(l)(x� v).
On the other hand, if f (l) depends on variables that change,
we only need to consider for the evaluation of S

(l)
v (x) the

changed variables that a↵ect f (l). These variables are char-
acterized by the mask vector v ^ wl. With the help of (5)
we can write (3) as:

Sv(x) =
mX

l=1
wl^v 6=0

S
(l)
v^wl

(x), (6)

3.1 Scores Decomposition
The Score values in a ball of radius r give more informa-

tion than just the change in the objective function for moves
in that ball. Let us illustrate this idea with the moves in the
balls of radius r = 1 and r = 2. Let us assume that xi and
xj are two variables that do not appear together as argu-
ments of any subfunction f

(l). Then, the Score of the move

Each subfunction is unknown
and depends on k variables

All compresible pseudo-Boolean
functions can be transformed into

this in polynomial time
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Variable Interaction

f =  + + + f(1)(x) f(2)(x) f(3)(x) f(4)(x) 

x1 x2 x3 x4 

xi and xj interact when they appear together in the same subfunction*

If xi and xj don’t interact: ∆ij = ∆i + ∆j

x4 x3

x1 x2

Variable Interaction Graph (VIG)
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Hamming Ball Hill Climber (HBHC)

r

Identifying improving moves in a ball of radius r around solution x

Based on the concept of Score (delta evaluation): ∆v

GECCO 2014: C., Whitley, Sutton
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Let us suppose our function has the following VIG…

�if(x1, x2, . . . , xn) = f(x1, x2, . . . , 1i, . . . , xn)� f(x1, x2, . . . , 0i, . . . , xn)

f(x1, x2, x3, x4) = x1x2 + x2x3 + x2x4 + x3x4

x9

x20

x23

x22

x21

x8

x10

x1 x2

x3

x4

x5

x6
x7

x15

x14

x13

x12

x11

x16

x19

x18

x17

1

Partition Crossover (PX)
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PX creates a graph with only the differing variables (recombination graph)

All the variables in a component are taken from the same parent
The contribution of each component to the fitness value of the offspring is 
independent of each other

x23

x18

x9

x3

x5

x16

FOGA 2015: Tinós, Whitley, C.

Partition Crossover (PX)
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PX creates a graph with only the differing variables (recombination graph)

All the variables in a component are taken from the same parent

The contribution of each component to the fitness value of the offspring is 
independent of each other

Partition Crossover (PX)

x23

x18

x9

x3

x5

x16

If there are q
components, the best 

offspring out of 2q
solutions is obtained

FOGA 2015: Tinós, Whitley, C.



Gray-Box Optimization for Million Variable Pseudo-Boolean Problems

CIMO 2018, 12-13 July, Nagano, Japan 15

Let us suppose our function has the following VIG…

�if(x1, x2, . . . , xn) = f(x1, x2, . . . , 1i, . . . , xn)� f(x1, x2, . . . , 0i, . . . , xn)

f(x1, x2, x3, x4) = x1x2 + x2x3 + x2x4 + x3x4

x9

x20

x23

x22

x21

x8

x10

x1 x2

x3

x4

x5

x6
x7

x15

x14

x13

x12

x11

x16

x19

x18

x17

1

0
1

1
0

1

00

0
1

1

0

0

1

0

1

1 1 1
1

1

0
1

1

0
1

0
0

1

00

0
1

0

1

0

1

0

0

1
1

0 1

0

0

0
1

Articulation Points Partition Crossover (APX)



Gray-Box Optimization for Million Variable Pseudo-Boolean Problems

CIMO 2018, 12-13 July, Nagano, Japan 16

x23

x18

x9

x3

x5

x16

GECCO 2018: C., Ochoa, Whitley, Tinós

x1

Articulation Points Partition Crossover (APX)

Original PX would find 2 
components, and would 

provide the best of 4 solutions
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Articulation Points in a Graph

Articulation point
Connected sub-component

a

C1

C2

C3

C4
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Articulation Points in a Graph

Enhancing Partition Crossover with Articulation Points Analysis GECCO ’18, July 15–19, 2018, Kyoto, Japan

0

1

2

3

7

8

9
11

12

13

15

16

Figure 2: Recombination Graph for the solutions (parents)
P1 = 000000000000000000 and P2 = 111100011101110110.

from one of the two parents. The recombination graph also de�nes
a reduced evaluation function. This new evaluation function is
linearly separable, and decomposes into q subfunctions de�ned
over the recombining components.

�(x 0) = a + �1(9, 11, 16) + �2(0, 1, 2) + �3(3, 7, 8, 12, 13, 15),
where �(x 0) = f |h (x 0) and x

0 are restricted to a subspace of the
hyperplaneh that contains the parent strings P1 and P2 as well as all
of their potential o�spring under Partition Crossover. The constant
a = f (x 0) �Õ3

i=1 �i (x 0) depends on the common variables. We can
now see how Partition Crossover works. Every recombination over
q recombining components induces a new separable function �(x 0)
that is de�ned as:

�(x 0) = a +

q’
i=1

�i (x 0). (2)

Since �(x 0) is a separable function, Partition Crossover can be
greedy and select which parent yields the best partial solution for
each subfunction �i (x 0). The following Partition Crossover The-
orem was originally proven to hold for the Traveling Salesman
Problem [8]. Tinós et al. [6] have proven the following result also
holds for all k-bounded pseudo-Boolean functions.

T������ 2.1 (T�� P�������� C�������� T������). Given q
linearly separable recombining components with bounded epistasis,
Partition Crossover returns the best of 2q � 2 reachable solutions
distinct from parent solutions P1 and P2 in O(N ) time.

3 ARTICULATION POINTS ANALYSIS
The performance of Partition Crossover is related to the number
of connected components it can �nd in the recombination graph,
because the operator implicitly explores a number of solutions
which is exponential in the number of connected components. We
propose here an improvement over Partition Crossover, consist-
ing in �ipping some variables in one of the parent solutions in
order to break the connected components of the recombination
graph, increasing the number of connected components. A node in
a graph whose removal can break a connected component is called
articulation point [5] (see Figure 3). By �nding and evaluating the
articulation points of the recombination graph, our proposed oper-
ator is able to explore an exponentially larger set of solutions with
the same asymptotic cost as the original Partition Crossover, that is,

O(m) wherem is the number of edges in the recombination graph.
The new operator is called Articulation Points Partition Crossover
(APX). In short, for each variable which is an articulation point
of the recombination graph, APX computes the increase in the
objective function of assigning the same value to that variable in
both parents and applying Partition Crossover. This computation
is independently performed for each connected component and all
the contributions are added to give the overall contribution. If there
is no articulation point in the recombination graph or removing an
articulation point does not increase the objective value, the operator
works as the original PX. In the following sections we detail the
theoretical background of the operator.

x2

x1

x3 x4

x0

Figure 3: Example of articulation points. Nodes x3 and x4 are
articulation points of the graph.

3.1 Finding Articulation Points
Articulation points in a graph can be found using an algorithm due
to Tarjan [5]. This algorithm is a slight modi�cation of a Depth First
Search (DFS) exploration of the graph. The algorithm can also be
used to �nd the connected components required for PX. Let’s call
DFS tree the exploration tree that is obtained after a DFS exploration
of a graph. Then, a node � is an articulation point if any of the
following two conditions hold [5]:

• the node is the root of the DFS tree and it has more than one
child, or

• the node is not the root of the DFS tree and it has a child
subtree with all its edges incident in nodes found not earlier
than � in the DFS tree.

These conditions can be used to implement an algorithm to �nd
all the articulation points of a graph G(V ,E). The complexity of
this algorithm is: O(|V | + |E |). In the case of a k-bounded pseudo-
Boolean function, |E | is proportional to |V | and the complexity is
O(|V |) = O(N ).

3.2 Evaluating Articulation Points
Removing an articulation point is not always useful, since it implies
�ipping a variable in one of the parent solutions and this could
decrease the objective value, yielding an o�spring that may not im-
prove the parent solutions. Let x and � denote the parent solutions,
G(V ,E) the recombination graph and C ✓ V one connected com-
ponent of G. We will denote with 1C a binary string with 1 in the
positions of the variables in C and 0 in the remaining positions (of
variables not in C). We will use F to denote the set of subfunctions
fi whose sum is f . Given a set of variables C , we denote with FC
the subset of subfunctions of F that depend on a variable in C . Let

Articulation Points
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x23

x18

x9

x3

x5

x16

GECCO 2018: C., Ochoa, Whitley, Tinós

x1

Articulation Points Partition Crossover (APX)
APX identifies articulation points in the recombination graph

It implicitly considers all the solutions PX would consider if one or none articulation 
point is removed from each connected component

APX will consider 2 and 3 
components and will provide 

the best of 32 solutions
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GECCO 2018: C., Ochoa, Whitley, Tinós

Articulation Points Partition Crossover (APX)
Example for NKQ Landscapes with N=100 000 and K=2 (DRILS+APX)

There are 4339 nodes grouped in 858 components with 1825 articulation points (in red)

Enhancing Partition Crossover with Articulation Points Analysis GECCO ’18, July 15–19, 2018, Kyoto, Japan

have several articulation points. The trend in the number of articu-
lation points is not as clear as the number of components. While the
number of components decrease with K , the number of articulation
points can increase or decrease with K . The average degree of the
articulation points is slightly larger than 2 (its minimum value). It is
not common to see high degrees; the maximum value we observed
in the experiments was 13. High values are more probable when K

is high. Regarding the number of explored solutions, we observe
that the logarithm is around two times the number of components.
This means that APX implicitly explores a set of solutions with a
size that is around the square of the number of solutions explored
by PX. According to the data in Table 1, this number is between
2254 = 1076 and 215 987 = 104 813.

Figure 7 shows the recombination graph for two local optima
during a run of DRILS+APX. For visualization purposes, we chose
one of the smallest recombination graphs we observed in the ex-
periments, for an instance with N = 105 variables and K = 2.
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Figure 7: Example of recombination graph during a
DIRLS+APX run for an NK instance with N = 105 and K = 2,
showing the connected components and articulation points
(red nodes). The graph contains 858 components and 4 339
nodes, of which 1 825 are articulation points (42%).

4.2 Performance Comparison in NKQ
Landscapes

The goal of the second experiment is to determine when APX is
bene�cial when compared to the original PX. Table 2 shows in
the third and fourth columns the number of instances where each
algorithm (DRILS and DRILS+APX) statistically outperforms the
other. The �fth column reports the number of instances where there
is no statistically signi�cant di�erence between the algorithms. We
used the Mann-Whitney test for the comparison, and marked a
di�erence as signi�cant when the test reports a p-value below 0.05.

We can observe that DRILS+APX is statistically better than
DRILS in 40 instances, DRILS is better than DRILS+APX in 4 in-
stances and they are both similar in 36 instances.

Figure 8 shows the average �tness over time obtained by DRILS
and DRILS+APX for a concrete NKQ con�guration with N = 106

Table 2: Number of NKQ instances where any of the algo-
rithms statistically outperforms the other or the two are
similar. The average runtime of one execution of APX and
PX is also shown.

DRILS performance Runtime (ms)

N K APX PX Sim. APX PX

105

2 10 0 0 55 46
3 10 0 0 67 73
4 2 0 8 55 52
5 1 1 8 63 52

106

2 2 3 5 1 383 970
3 5 0 5 1 785 2 485
4 9 0 1 1 360 1 439
5 1 0 9 1 633 1 559

and K = 3 (average over 100 samples). We can clearly see how
DRILS+APX outperformed DRILS after a few seconds.

Columns sixth and seventh of Table 1 also report the average
runtime of one application of APX and PX. The numbers are in
the same order of magnitude although sometimes PX is faster and
sometimes is slower than APX. Thus, we can claim that the extra
computation does not have a big impact in the runtime.

Figure 8: Average �tness over time obtained by DRILS and
DRILS+APX in all the instances and all the runs of NKQ
Landscapes for N = 106 and K = 3.

4.3 Performance Comparison in MAX-SAT
We used the weighted and unweighted benchmarks for incomplete
solvers of the MAX-SAT Evaluation 20172. From the 194 instances
in the unweighted benchmark, our implementation worked with
160, running out of memory in the remaining 34 instances. In the
case of the weighted benchmark the implementation worked on 132
out of the 156 instances. This section reports the results obtained
over these 292 MAX-SAT instances. Table 3 reports the number of
instances where each algorithm statistically outperforms the other
2http://mse17.cs.helsinki.�/benchmarks.html.
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Articulation Points Partition Crossover (APX)
The number of implicitly studied solutions is:
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selects the one providing the maximum value for �C . We defer the
analysis of �ipping multiple articulation points in a connected com-
ponent to future work. The next theorem presents the expression
for the objective function of an o�spring z of APX and the number
of implicitly explored solutions (from which the o�spring is the
best).

T������ 3.2. Given two solutions x and � whose o�spring by
APX is z, the value of f (z) is

f (z) =
’

C 2CC(G)
�C (z) +

’
h2F�Fx��

h(z) (4)

whereCC(G) is the set of connected components of the recombination
graph of x and �, and F � Fx �� is the set of subfunctions that only
depend on variables with the same value in x and �. The expression
of �C (z) is:

�C (z) = max
a2AP (C )
t2{x,�}

©≠
´
’

h2Fa⇤
h(t � 1a ) +

da’
i=1

�Ca
i ,a (t)

™Æ
¨

(5)

where �Ca
i ,a (t) = max

⇣
�Ca

i
(t � 1a ),�Ca

i
(t � 1C )

⌘
is the contribu-

tion of the connected sub-component Ca
i when articulation point a is

removed and Fa⇤ = F {a } �[dai=1FCa
i
is the set of subfunctions that de-

pend on a but not on any other variable inC . The number of solutions
that APX implicitly explores is:

E(x ,�) = 2 |CC(G) |
÷

C 2CC(G)

©≠
´
1 � eC +

’
a2AP (C)

⇣
2da � 1

⌘™Æ
¨
, (6)

where eC is the number of edges in the connected component C join-
ing two articulation points. Observe that 2 |CC(G) | is the number of
solutions implicitly explored by the original PX.

P����. Equation (5) is a consequence of Lemma 3.1 where the
maximum over all the articulation points in a connected component
is taken. Equation (4) is a sum of the contribution to the objective
value of each connected component plus the sum of the evaluation
of the subfunctions that were not considered in the evaluation of
the connected components because they do not depend on any
variable in a connected component (they only depend on variables
with the same values in both parents).

Regarding the number of solutions implicitly explored, the inde-
pendent analysis of each articulation point (Lemma 3.1) provides a
count of 2da+1 combinations of variables, but we have to subtract
from the count the combinations that are explored in the analysis
of two di�erent articulation points. Two combinations implicitly
explored by the analysis of any articulation point are those of par-
ent solutions x and �. We have to remove these two combinations
from any 2da+1 count and add 2 to the �nal sum (to take them into
account). If two articulation points are joined by an edge, there are
two additional common combinations generated by choosing a dif-
ferent parent for the variables at each side of the edge (see Figure 5).
Thus, we have to subtract 2eC to the count of explored combina-
tions, where eC is the number of edges joining two articulation
points in C .

Given two articulation points, if they are not joined by an edge,
then the only two common combinations explored by both are the
parent combinations. Figure 6 helps to see this. Let us suppose that

Articulation points

a1

C3

C4

C2

C1

a2

Figure 5: Two articulation points joined by an edge. The anal-
yses of a1 and a2 explore four common combinations, where
the variables at each side of the edge select one of the two
parents independently.

we are exploring a combination common to the analysis of a1 and
a2. Then, all the variables in the sub-component C3 must be taken
from the same parent, including a2 and� . The analysis of a2 reveals
that a1 and the sub-components C1 and C2 must be taken from
the same parent as variable � in sub-component C3. Thus, all the
variables in the component must be taken from the same parent
and we are exploring one of the parent combinations.

Articulation points

a1

C2

C1

C3

a2
v

Figure 6: Two articulation points not joined by an edge. The
analyses of a1 and a2 explore only two common combina-
tions: the ones found in the parent solutions.

In summary, the number of explored combinations in one con-
nected component C is:

’
a2AP (C)

(2da+1�2)�2eC+2 = 2 ©≠
´
1 � eC +

’
a2AP (C)

(2da � 1)™Æ
¨
. (7)

The product of Equation (7) extended to all the connected com-
ponents of G is Equation (6). ⇤

A more practical (easier to remember) lower bound for the num-
ber of explored solutions is provided in the next corollary.

C�������� 3.3. Given two solutions x and �, a lower bound of
the number of solutions implicitly evaluated in APX is:

E(x ,�) � 2 |CC(G) |
÷

C2CC (G )
|AP (C )|>0

2(1 + |AP(C)|) (8)

Number of solutions

considered by PX Edges joining two

articulation points

Degree of an articulation point

in the recominbation graph

Connected

component
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selects the one providing the maximum value for �C . We defer the
analysis of �ipping multiple articulation points in a connected com-
ponent to future work. The next theorem presents the expression
for the objective function of an o�spring z of APX and the number
of implicitly explored solutions (from which the o�spring is the
best).

T������ 3.2. Given two solutions x and � whose o�spring by
APX is z, the value of f (z) is

f (z) =
’

C 2CC(G)
�C (z) +

’
h2F�Fx��

h(z) (4)

whereCC(G) is the set of connected components of the recombination
graph of x and �, and F � Fx �� is the set of subfunctions that only
depend on variables with the same value in x and �. The expression
of �C (z) is:

�C (z) = max
a2AP (C )
t2{x,�}
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where �Ca
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⌘
is the contribu-

tion of the connected sub-component Ca
i when articulation point a is

removed and Fa⇤ = F {a } �[dai=1FCa
i
is the set of subfunctions that de-

pend on a but not on any other variable inC . The number of solutions
that APX implicitly explores is:

E(x ,�) = 2 |CC(G) |
÷

C 2CC(G)

©≠
´
1 � eC +

’
a2AP (C)

⇣
2da � 1

⌘™Æ
¨
, (6)

where eC is the number of edges in the connected component C join-
ing two articulation points. Observe that 2 |CC(G) | is the number of
solutions implicitly explored by the original PX.

P����. Equation (5) is a consequence of Lemma 3.1 where the
maximum over all the articulation points in a connected component
is taken. Equation (4) is a sum of the contribution to the objective
value of each connected component plus the sum of the evaluation
of the subfunctions that were not considered in the evaluation of
the connected components because they do not depend on any
variable in a connected component (they only depend on variables
with the same values in both parents).

Regarding the number of solutions implicitly explored, the inde-
pendent analysis of each articulation point (Lemma 3.1) provides a
count of 2da+1 combinations of variables, but we have to subtract
from the count the combinations that are explored in the analysis
of two di�erent articulation points. Two combinations implicitly
explored by the analysis of any articulation point are those of par-
ent solutions x and �. We have to remove these two combinations
from any 2da+1 count and add 2 to the �nal sum (to take them into
account). If two articulation points are joined by an edge, there are
two additional common combinations generated by choosing a dif-
ferent parent for the variables at each side of the edge (see Figure 5).
Thus, we have to subtract 2eC to the count of explored combina-
tions, where eC is the number of edges joining two articulation
points in C .

Given two articulation points, if they are not joined by an edge,
then the only two common combinations explored by both are the
parent combinations. Figure 6 helps to see this. Let us suppose that

Articulation points
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C3

C4

C2

C1

a2

Figure 5: Two articulation points joined by an edge. The anal-
yses of a1 and a2 explore four common combinations, where
the variables at each side of the edge select one of the two
parents independently.

we are exploring a combination common to the analysis of a1 and
a2. Then, all the variables in the sub-component C3 must be taken
from the same parent, including a2 and� . The analysis of a2 reveals
that a1 and the sub-components C1 and C2 must be taken from
the same parent as variable � in sub-component C3. Thus, all the
variables in the component must be taken from the same parent
and we are exploring one of the parent combinations.

Articulation points

a1

C2

C1

C3

a2
v

Figure 6: Two articulation points not joined by an edge. The
analyses of a1 and a2 explore only two common combina-
tions: the ones found in the parent solutions.

In summary, the number of explored combinations in one con-
nected component C is:

’
a2AP (C)

(2da+1�2)�2eC+2 = 2 ©≠
´
1 � eC +

’
a2AP (C)

(2da � 1)™Æ
¨
. (7)

The product of Equation (7) extended to all the connected com-
ponents of G is Equation (6). ⇤

A more practical (easier to remember) lower bound for the num-
ber of explored solutions is provided in the next corollary.

C�������� 3.3. Given two solutions x and �, a lower bound of
the number of solutions implicitly evaluated in APX is:

E(x ,�) � 2 |CC(G) |
÷

C2CC (G )
|AP (C )|>0

2(1 + |AP(C)|) (8)
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Articulation Points Partition Crossover (APX)
All the analysis can be done using Tarjan’s algorithm to find articulation points (DFS-

like algorithm) : time complexity is the same as the original PX

a1

C1

C2
C3 C4

a2
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Deterministic Recombination and 
Iterated Local Search (DRILS)

GECCO ’17, July 15-19, 2017, Berlin, Germany F. Chicano et al.

Algorithm 1 HiReLS
1: stack ;
2: while not stopping condition do
3: current HBHC(random());
4: current.level 0;
5: if stack.isEmpty() or stack.peek().level > 0 then
6: stack.push(current);
7: else
8: pxSuccess true;
9: while !stack.isEmpty() and pxSuccess and

stack.peek().level = current.level do
10: top stack.pop();
11: child PX(top, current);
12: pxSuccess child , top and child , current;
13: if pxSuccess then
14: current HBHC(child);
15: current.level++;
16: end if
17: end while
18: if pxSuccess then
19: stack.push(current);
20: end if
21: end if
22: end while

PX PX PX

PX

level-0

level-1

Random solutions

Figure 3: An illustration of HiReLS. Filled circles are local
optima and curly arrows represent the HBHC.

�en DRILS perturbs the local optimum by randomly �ipping �N
bits, where � is a small fraction (below 0.15 in the experiments).
We call the parameter � the perturbation factor. �is process results
in a so� restart and, a�er applying HBHC, it generates a new local
optimum that should be relative close in Hamming distance to
the previous local optimum. �ese two consecutively generated
local optima can now be recombined using Partition Crossover.
�e o�spring solution can also be improved by HBHC if necessary.
�e process is then iterated: the most recently discovered local
optimum is perturbed and a new local optimum is generated. A

Algorithm 2 DRILS
1: current HBHC(random());
2: while not stopping condition do
3: next HBHC (perturb(current));
4: child PX(current, next);
5: if child = current or child = next then
6: current next;
7: else
8: current HBHC(child);
9: end if
10: end while

PX PX

Figure 4: Graphical illustration of DRILS. Curly arrows rep-
resent HBHCwhile normal arrows represent a perturbation
�ipping �N random bits.

graphical illustration of the algorithm is presented in Figure 4 and
the pseudocode is shown in Algorithm 2.

4 EXPERIMENTAL STUDY
In this section we analyze the performance of our two proposals on
adjacent and random NKQ Landscapes. We will also compare the
performance with one of the best state-of-the-art algorithms for
pseudo-Boolean optimization in a gray-box se�ing: the Gray-Box
Parameterless Population Pyramid algorithm (GB-P3) [2].

In all the experiments the radius of the neighborhood in the
Hamming Ball Hill Climber was set to 1. �e machine used in
the experiments is a multicore machine with four Intel Xeon CPU
(E5-2670 v3) at 2.3 GHz, a total of 48 cores, 64 GB of memory and
Ubuntu 14.04 LTS. HiReLS and DRILS were implemented in Java 1.6
and the memory usage was limited to 3GB during all the executions.
�e source code is freely available in GitHub2.

4.1 Solving Adjacent NKQ Landscapes
In a �rst experiment we run HiReLS, DRILS and GB-P3 using 50
di�erent instances of the adjacent NKQ Landscapes and 10 indepen-
dent runs per instance. �e stopping condition for all algorithms
is to reach �ve minutes of computation3. �e number of variables
is N = 100, 000, the value for Q is 64 and the value for K = k � 1
was changed from 1 to 5 (10 instances were generated for each
value of K). In the case of DRILS we used di�erent values for the
perturbation factor � : 0.005, 0.01, 0.05, 0.10 and 0.15. In Figures 5
and 6 we plot the average �tness (over 100 samples, 10 instances
and 10 runs) found by the algorithms at each time. For the sake of
clarity we omi�ed the results of DRILS of perturbation factors 0.05
and 0.10 and we only show the plots for K = 1 and K = 5.

2h�ps://github.com/jfrchicanog/E�cientHillClimbers
3�e stopping condition is arbitrary, but most of the algorithms seem to converge a�er
�ve minutes. A stopping condition based on the algorithm progress should be used in
future work.

HBHC (local search)

Perturbation

Random Solution Local Optimum
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Experimental Results
• An NK Landscape is a pseudo-Boolean optimization problem with objective function:

where each subfunction f(l) depends on variable xl and K other variables

r = 1 n
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�n
r

�

Ball
Pr
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�

S1(x) = f(x� 1)� f(x)

Sv(x) = f(x� v)� f(x) =
mX

l=1

(f (l)(x� v)� f (l)(x)) =
mX

l=1

S(l)(x)

S4(x) = f(x� 4)� f(x)

S1,4(x) = f(x� 1, 4)� f(x)

S1,4(x) = S1(x) + S4(x)

S1(x) = f (1)(x� 1)� f (1)(x)

S2(x) = f (1)(x� 2)� f (1)(x) + f (2)(x� 2)� f (2)(x) + f (3)(x� 2)� f (3)(x)

S1,2(x) = f (1)(x�1, 2)�f (1)(x)+f (2)(x�1, 2)�f (2)(x)+f (3)(x�1, 2)�f (3)(x)

S1,2(x) 6= S1(x) + S2(x)
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Figure 1: A sample Variable Interaction Graph with two changing variables
(left) and the set of variables and adjacent variables (right).
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Experimental Results
1M variable adjacent NK Landscape with K=3
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Experimental Results
100,000 variable adjacent NK Landscape

K=1 K=5

GB-P3: Gray-Box Parameter-less Population Pyramid

GECCO 2015: Goldman, Punch
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Experimental Results
100,000 variable random NK Landscape
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Average number of components found by Partition Crossover
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Table 1: Average ranking of the perturbation factor values
(across rows) in terms of sum of number of components
found by PX and average �nal �tness value in the runs of
DRILS for the random NKQ Landscapes with N = 106.

Perturbation Factor (� )
0.005 0.01 0.05 0.10 0.15

K PX Fit PX Fit PX Fit PX Fit PX Fit
1 5.0 5.0 4.0 4.0 3.0 3.0 2.0 2.0 1.0 1.0
2 5.0 5.0 4.0 4.0 1.1 1.3 1.9 1.7 3.0 3.0
3 3.0 3.3 2.0 2.0 1.0 1.0 4.0 3.7 5.0 5.0
4 2.0 3.0 1.0 1.0 3.0 2.0 4.0 4.0 5.0 5.0
5 1.9 2.7 1.1 1.0 3.0 2.3 4.0 4.0 5.0 5.0

Table 2: Average number of components q found by Parti-
tion Crossover in the runs of DRILS for the random NKQ
Landscapes with N = 106 and di�erent values for � and K .

Perturbation Factor (� )
K 0.005 0.01 0.05 0.10 0.15
1 683 1,314 6,059 11,442 16,259
2 967 1,772 6,938 11,426 13,428
3 1,041 1,810 4,970 3,639 2,367
4 993 1,657 1,780 661 301
5 903 1,344 517 100 38

It is not hard to theoretically compute the optimal value for the
perturbation factor for the Adjacent NK Landscape if no hill climb-
ing is applied to the perturbed solution (see Appendix B in supple-
mentary material). �e optimal perturbation factor is 1/(K + 1) and
the expected number of components is approximatelyNe

�1/(K+1).
DRILS applies HBHC a�er the perturbation and, for this reason,
the previous expressions are not strictly correct. However, as we
increase K the optimal perturbation factor decreases and the same
happens with the number of components (and performance). In the
case of the Random NK Landscape the theoretical prediction is not
so easy to do, but we also observe in Table 1 and Figures 10 and 11
an empirical inverse relationship between the optimal perturbation
factor and performance.

5 CONCLUSIONS
We have presented two algorithms, HiReLS and DRILS, combining
two gray-box operators: Hamming Ball Hill Climbing and Partition
Crossover. �ese two operators, especially Partition Crossover,
are able to avoid exploring many low quality solutions thanks to
the use of the VIG. In a typical 5-minutes run of DRILS solving
random NKQ Landscapes with N = 1, 000, 000, K = 3 and � = 0.05,
it applied 48 successful recombinations of local optima, with an
average of 4,970 components found in each of them (see Table 2),
discarding 24,970 solutions in each recombination. HBHC found
98 local optima, discarding 1 million solutions in each of them. In
total, the number of implicitly considered solutions in 300 seconds
is around 101,497. �is is equivalent to evaluating 101,485 solutions
per nanosecond using a black-box algorithm, which is impossible
using current technology. We have also shown that HiReLS and
DRILS beat Goldman’s Gray-Box Parameterless Population Pyramid

(a state-of-the-art algorithm for pseudo-Boolean optimization) in
random and adjacent NKQ Landscapes.

Overall, we conclude that DRILS is the best algorithm in practice
from the ones compared here. In particular, it has been always the
best in the random model, which is NP-hard. One of the disadvan-
tages of DRILS is that it contains a parameter that has to be tuned:
the perturbation factor. We observed in the experiments that this
parameter can have a high impact in the performance. �e optimal
value for the perturbation factor of DRILS depends on the variable
interaction graph of the instance. Future work should address how
to set a near optimal value for this parameter, or even how to op-
timally perform the perturbation in DRILS using the information
contained in the variable interaction graph.

Industrial problems are not as structured as the adjacent NKQ
Landscapes or as random as the randommodel. Future work should
study how the proposed algorithms perform in semi-structured
instances that re�ect industrial and real-world problems.
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Experimental Results
APX runtime is in the same order of magnitude than that of PX
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P����. According to Eq. (6), each connected component with
articulation points contribute to the count with an additional factor
of

⇣
1 � eC +

Õ
a2AP (C)(2da � 1)

⌘
. We can easily compute a lower

bound of this expression by considering that da � 2 (a direct conse-
quence of the de�nition of articulation point) and eC  |AP(C)| � 1.
The latter can be explained by the fact that articulation points and
biconnected components (the subgraphs in between) form a tree [5].
The maximum number of edges joining two articulation points is
the number of edges of a tree formed by the articulation points,
and this is |AP(C)| � 1. Thus, we have 2da � 1 � 3 and

©≠
´
1 � eC +

’
a2AP (C)

(2da � 1)™Æ
¨
� (1 � eC + 3|AP(C)|)

� (1 � |AP(C)| + 1 + 3|AP(C)|)
� 2(1 + |AP(C)|),

what �nishes the proof. ⇤

Equation (8) clearly shows that the number of implicitly explored
solutions is much higher than that of PX. In APX, each connected
component with articulation points contributes with an additional
factor to the count of explored solutions of, at least, 2(1 + |AP(C)|).
This means, that any connected component with one articulation
point, increases the count in, at least, a factor of 4 compared to PX.
A component with two articulation points increases the count in,
at least, a factor of 6 compared to PX.

The computation of the best articulation point to remove (if
any) and the best decision for each sub-component in a connected
component of the recombination graph can be done during the DFS
exploration. The computation e�ort required to do this analysis
only increases the time in a constant factor compared to PX. There
is no change in the asymptotic behaviour of the operator run time,
which isO(N ) for k-bounded pseudo-Boolean functions andO(N 2)
in the general case.

4 EXPERIMENTS
In order to experimentally analyze the performance of APX, we
included it in the Deterministic Recombination and Iterated Local
Search (DRILS) algorithm. DRILS [1] uses a �rst improving move
hill climber to reach a local optimum. Then, it perturbs the solution
by randomly �ipping �N bits, where � is the so-called perturbation
factor. It then applies local search to the new solution to reach
another local optimum and applies Partition Crossover to the last
two local optima, generating a new solution that is improved further
with the hill climber. This process is repeated until a time limit is
reached. The pseudocode is shown in Algorithm 1.

In addition to the original DRILS algorithm, we implement a vari-
ant where the Partition Crossover operator in Line 4 of Algorithm 1
is replaced by APX. This version is called DRILS+APX in the rest
of the paper. In all the runs we set a time limit of 60s (1 minute).
Since the algorithms are stochastic, we performed 10 independent
runs for each instance and algorithm. We used NP-hard problems to
measure the performance of APX: Random NKQ Landscapes with
K � 2 and MAX-SAT.

The computer used for the experiments is a multicore machine
with four Intel Xeon CPU (E5-2670 v3) at 2.3 GHz, a total of 48

Algorithm 1 DRILS

1: current hillClimber(random());
2: while not stopping condition do
3: next hillClimber (perturb(current));
4: child PX(current, next);
5: if child = current or child = next then
6: current next;
7: else
8: current hillClimber(child);
9: end if
10: end while

cores, 64 GB of memory and Ubuntu 16.04 LTS. The memory
usage was limited to 3GB during all the executions. The source
code of DRILS and DRILS+APX is available at https://github.com/
jfrchicanog/E�cientHillClimbers.

4.1 APX Statistics
In a �rst experiment, we compute statistics about the new opera-
tor. In particular, we count the number of connected components
identi�ed in the recombination graph, the number of articulation
points, the number of connected sub-components joined by the
articulation points (da ), and the number of explored solutions in
one recombination. To collect these data, we used random NKQ
Landscapes, where N = 105 variables and N = 106 variables, K
goes from 2 to 5 andQ = 64. For each combination of the parameter
N and K we generated 10 random instances and run DRILS+APX
10 times. The perturbation factor (� ) in DRILS was set to � = 0.05
in the case K = 2, 3 and � = 0.01 in the case K = 4, 5. These values
were taken from the recommendations in [1].

Table 1 shows averages over all the recombinations appearing
in all the runs for each combination of N and K . In the case of the
number of explored solutions, we compute the binary logarithm
and provide the average. This makes it possible to easily compare
the number of solutions explored by APX and PX, since the number
of components (third column) is the binary logarithm of the number
of solutions explored by PX.

Table 1: APX Statistics.

N K #Comp. #APs da log2 E(x ,�)

105

2 662 687 2.25 1 311
3 503 1 151 2.37 1 105
4 138 196 2.33 286
5 119 218 2.36 254

106

2 7 774 10 836 2.28 15 987
3 4 515 21 793 2.35 9 454
4 1 748 6 281 2.38 3 907
5 1 105 7 207 2.34 2 341

We can observe in Table 1 that the number of articulation points
can be similar to the number of components, but it can also be
several times larger, indicating that each connected component can

Enhancing Partition Crossover with Articulation Points Analysis GECCO ’18, July 15–19, 2018, Kyoto, Japan

have several articulation points. The trend in the number of articu-
lation points is not as clear as the number of components. While the
number of components decrease with K , the number of articulation
points can increase or decrease with K . The average degree of the
articulation points is slightly larger than 2 (its minimum value). It is
not common to see high degrees; the maximum value we observed
in the experiments was 13. High values are more probable when K

is high. Regarding the number of explored solutions, we observe
that the logarithm is around two times the number of components.
This means that APX implicitly explores a set of solutions with a
size that is around the square of the number of solutions explored
by PX. According to the data in Table 1, this number is between
2254 = 1076 and 215 987 = 104 813.

Figure 7 shows the recombination graph for two local optima
during a run of DRILS+APX. For visualization purposes, we chose
one of the smallest recombination graphs we observed in the ex-
periments, for an instance with N = 105 variables and K = 2.
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Figure 7: Example of recombination graph during a
DIRLS+APX run for an NK instance with N = 105 and K = 2,
showing the connected components and articulation points
(red nodes). The graph contains 858 components and 4 339
nodes, of which 1 825 are articulation points (42%).

4.2 Performance Comparison in NKQ
Landscapes

The goal of the second experiment is to determine when APX is
bene�cial when compared to the original PX. Table 2 shows in
the third and fourth columns the number of instances where each
algorithm (DRILS and DRILS+APX) statistically outperforms the
other. The �fth column reports the number of instances where there
is no statistically signi�cant di�erence between the algorithms. We
used the Mann-Whitney test for the comparison, and marked a
di�erence as signi�cant when the test reports a p-value below 0.05.

We can observe that DRILS+APX is statistically better than
DRILS in 40 instances, DRILS is better than DRILS+APX in 4 in-
stances and they are both similar in 36 instances.

Figure 8 shows the average �tness over time obtained by DRILS
and DRILS+APX for a concrete NKQ con�guration with N = 106

Table 2: Number of NKQ instances where any of the algo-
rithms statistically outperforms the other or the two are
similar. The average runtime of one execution of APX and
PX is also shown.

DRILS performance Runtime (ms)

N K APX PX Sim. APX PX

105

2 10 0 0 55 46
3 10 0 0 67 73
4 2 0 8 55 52
5 1 1 8 63 52

106

2 2 3 5 1 383 970
3 5 0 5 1 785 2 485
4 9 0 1 1 360 1 439
5 1 0 9 1 633 1 559

and K = 3 (average over 100 samples). We can clearly see how
DRILS+APX outperformed DRILS after a few seconds.

Columns sixth and seventh of Table 1 also report the average
runtime of one application of APX and PX. The numbers are in
the same order of magnitude although sometimes PX is faster and
sometimes is slower than APX. Thus, we can claim that the extra
computation does not have a big impact in the runtime.

Figure 8: Average �tness over time obtained by DRILS and
DRILS+APX in all the instances and all the runs of NKQ
Landscapes for N = 106 and K = 3.

4.3 Performance Comparison in MAX-SAT
We used the weighted and unweighted benchmarks for incomplete
solvers of the MAX-SAT Evaluation 20172. From the 194 instances
in the unweighted benchmark, our implementation worked with
160, running out of memory in the remaining 34 instances. In the
case of the weighted benchmark the implementation worked on 132
out of the 156 instances. This section reports the results obtained
over these 292 MAX-SAT instances. Table 3 reports the number of
instances where each algorithm statistically outperforms the other
2http://mse17.cs.helsinki.�/benchmarks.html.
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P����. According to Eq. (6), each connected component with
articulation points contribute to the count with an additional factor
of

⇣
1 � eC +

Õ
a2AP (C)(2da � 1)

⌘
. We can easily compute a lower

bound of this expression by considering that da � 2 (a direct conse-
quence of the de�nition of articulation point) and eC  |AP(C)| � 1.
The latter can be explained by the fact that articulation points and
biconnected components (the subgraphs in between) form a tree [5].
The maximum number of edges joining two articulation points is
the number of edges of a tree formed by the articulation points,
and this is |AP(C)| � 1. Thus, we have 2da � 1 � 3 and

©≠
´
1 � eC +

’
a2AP (C)

(2da � 1)™Æ
¨
� (1 � eC + 3|AP(C)|)

� (1 � |AP(C)| + 1 + 3|AP(C)|)
� 2(1 + |AP(C)|),

what �nishes the proof. ⇤

Equation (8) clearly shows that the number of implicitly explored
solutions is much higher than that of PX. In APX, each connected
component with articulation points contributes with an additional
factor to the count of explored solutions of, at least, 2(1 + |AP(C)|).
This means, that any connected component with one articulation
point, increases the count in, at least, a factor of 4 compared to PX.
A component with two articulation points increases the count in,
at least, a factor of 6 compared to PX.

The computation of the best articulation point to remove (if
any) and the best decision for each sub-component in a connected
component of the recombination graph can be done during the DFS
exploration. The computation e�ort required to do this analysis
only increases the time in a constant factor compared to PX. There
is no change in the asymptotic behaviour of the operator run time,
which isO(N ) for k-bounded pseudo-Boolean functions andO(N 2)
in the general case.

4 EXPERIMENTS
In order to experimentally analyze the performance of APX, we
included it in the Deterministic Recombination and Iterated Local
Search (DRILS) algorithm. DRILS [1] uses a �rst improving move
hill climber to reach a local optimum. Then, it perturbs the solution
by randomly �ipping �N bits, where � is the so-called perturbation
factor. It then applies local search to the new solution to reach
another local optimum and applies Partition Crossover to the last
two local optima, generating a new solution that is improved further
with the hill climber. This process is repeated until a time limit is
reached. The pseudocode is shown in Algorithm 1.

In addition to the original DRILS algorithm, we implement a vari-
ant where the Partition Crossover operator in Line 4 of Algorithm 1
is replaced by APX. This version is called DRILS+APX in the rest
of the paper. In all the runs we set a time limit of 60s (1 minute).
Since the algorithms are stochastic, we performed 10 independent
runs for each instance and algorithm. We used NP-hard problems to
measure the performance of APX: Random NKQ Landscapes with
K � 2 and MAX-SAT.

The computer used for the experiments is a multicore machine
with four Intel Xeon CPU (E5-2670 v3) at 2.3 GHz, a total of 48

Algorithm 1 DRILS

1: current hillClimber(random());
2: while not stopping condition do
3: next hillClimber (perturb(current));
4: child PX(current, next);
5: if child = current or child = next then
6: current next;
7: else
8: current hillClimber(child);
9: end if
10: end while

cores, 64 GB of memory and Ubuntu 16.04 LTS. The memory
usage was limited to 3GB during all the executions. The source
code of DRILS and DRILS+APX is available at https://github.com/
jfrchicanog/E�cientHillClimbers.

4.1 APX Statistics
In a �rst experiment, we compute statistics about the new opera-
tor. In particular, we count the number of connected components
identi�ed in the recombination graph, the number of articulation
points, the number of connected sub-components joined by the
articulation points (da ), and the number of explored solutions in
one recombination. To collect these data, we used random NKQ
Landscapes, where N = 105 variables and N = 106 variables, K
goes from 2 to 5 andQ = 64. For each combination of the parameter
N and K we generated 10 random instances and run DRILS+APX
10 times. The perturbation factor (� ) in DRILS was set to � = 0.05
in the case K = 2, 3 and � = 0.01 in the case K = 4, 5. These values
were taken from the recommendations in [1].

Table 1 shows averages over all the recombinations appearing
in all the runs for each combination of N and K . In the case of the
number of explored solutions, we compute the binary logarithm
and provide the average. This makes it possible to easily compare
the number of solutions explored by APX and PX, since the number
of components (third column) is the binary logarithm of the number
of solutions explored by PX.

Table 1: APX Statistics.

N K #Comp. #APs da log2 E(x ,�)

105

2 662 687 2.25 1 311
3 503 1 151 2.37 1 105
4 138 196 2.33 286
5 119 218 2.36 254

106

2 7 774 10 836 2.28 15 987
3 4 515 21 793 2.35 9 454
4 1 748 6 281 2.38 3 907
5 1 105 7 207 2.34 2 341

We can observe in Table 1 that the number of articulation points
can be similar to the number of components, but it can also be
several times larger, indicating that each connected component can

APX runtime is in the same order of magnitude than that of PX and the number of 
solutions explored is squared!
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have several articulation points. The trend in the number of articu-
lation points is not as clear as the number of components. While the
number of components decrease with K , the number of articulation
points can increase or decrease with K . The average degree of the
articulation points is slightly larger than 2 (its minimum value). It is
not common to see high degrees; the maximum value we observed
in the experiments was 13. High values are more probable when K

is high. Regarding the number of explored solutions, we observe
that the logarithm is around two times the number of components.
This means that APX implicitly explores a set of solutions with a
size that is around the square of the number of solutions explored
by PX. According to the data in Table 1, this number is between
2254 = 1076 and 215 987 = 104 813.

Figure 7 shows the recombination graph for two local optima
during a run of DRILS+APX. For visualization purposes, we chose
one of the smallest recombination graphs we observed in the ex-
periments, for an instance with N = 105 variables and K = 2.
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Figure 7: Example of recombination graph during a
DIRLS+APX run for an NK instance with N = 105 and K = 2,
showing the connected components and articulation points
(red nodes). The graph contains 858 components and 4 339
nodes, of which 1 825 are articulation points (42%).

4.2 Performance Comparison in NKQ
Landscapes

The goal of the second experiment is to determine when APX is
bene�cial when compared to the original PX. Table 2 shows in
the third and fourth columns the number of instances where each
algorithm (DRILS and DRILS+APX) statistically outperforms the
other. The �fth column reports the number of instances where there
is no statistically signi�cant di�erence between the algorithms. We
used the Mann-Whitney test for the comparison, and marked a
di�erence as signi�cant when the test reports a p-value below 0.05.

We can observe that DRILS+APX is statistically better than
DRILS in 40 instances, DRILS is better than DRILS+APX in 4 in-
stances and they are both similar in 36 instances.

Figure 8 shows the average �tness over time obtained by DRILS
and DRILS+APX for a concrete NKQ con�guration with N = 106

Table 2: Number of NKQ instances where any of the algo-
rithms statistically outperforms the other or the two are
similar. The average runtime of one execution of APX and
PX is also shown.

DRILS performance Runtime (ms)

N K APX PX Sim. APX PX

105

2 10 0 0 55 46
3 10 0 0 67 73
4 2 0 8 55 52
5 1 1 8 63 52

106

2 2 3 5 1 383 970
3 5 0 5 1 785 2 485
4 9 0 1 1 360 1 439
5 1 0 9 1 633 1 559

and K = 3 (average over 100 samples). We can clearly see how
DRILS+APX outperformed DRILS after a few seconds.

Columns sixth and seventh of Table 1 also report the average
runtime of one application of APX and PX. The numbers are in
the same order of magnitude although sometimes PX is faster and
sometimes is slower than APX. Thus, we can claim that the extra
computation does not have a big impact in the runtime.

DRILS

DRILS+APX
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Figure 8: Average �tness over time obtained by DRILS and
DRILS+APX in all the instances and all the runs of NKQ
Landscapes for N = 106 and K = 3.

4.3 Performance Comparison in MAX-SAT
We used the weighted and unweighted benchmarks for incomplete
solvers of the MAX-SAT Evaluation 20172. From the 194 instances
in the unweighted benchmark, our implementation worked with
160, running out of memory in the remaining 34 instances. In the
case of the weighted benchmark the implementation worked on 132
out of the 156 instances. This section reports the results obtained
over these 292 MAX-SAT instances. Table 3 reports the number of
instances where each algorithm statistically outperforms the other
2http://mse17.cs.helsinki.�/benchmarks.html.
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(columns three and four). The �fth column reports the number of
instances where there is no statistically signi�cant di�erence (using
Mann-Whitney with signi�cance level 0.05) between the algorithms.
Three di�erent values for the perturbation factor (� ) were used:
0.10, 0.20 and 0.30.

Table 3: Number of MAX-SAT instances where any of the
algorithms statistically outperforms the other or the two are
similar. The last two columns report the runtime ofAPXand
PX.

DRILS performance Runtime (µs)

Instances � APX PX Sim. APX PX

Unweighted
0.10 78 1 81 463 454
0.20 82 2 75 684 729
0.30 85 2 73 849 1 060

Weighted
0.10 26 19 87 1 425 882
0.20 49 14 69 1 859 1 416
0.30 77 5 50 2 365 1 713

DRILS+APX seems to be better in the unweighted instances than
in the weighted ones, compared to DRILS. Unweighted instances are
expected to have more plateaus than weighted ones, and plateaus
seem to be problematic for the traditional PX. We also observe that
DRILS+APX outperforms DRILS more clearly for higher values of
the perturbation factor. The runtime of APX and PX is similar in
order of magnitude (hundreds of microseconds), but it is higher in
the case of APX for the weighted instances. This is an indication that
the work spent in the analysis of articulation points is not useful
most of the time for these instances. In the unweighted instances,
the runtime of APX is lower than that of PX for a high value of the
perturbation factor.

5 CONCLUSIONS
We propose an improved version of Partition Crossover, Articula-
tion Points Partition Crossover (APX). This new operator increases
the number of explored solutions in an exponential factor with just
a small constant increment in computational time. The core idea
of APX is to �ip variables in the parent solutions that are articu-
lation points in the recombination graph. As a result, the number
of connected components increases, and the variables in the new
components can be selected from one of the parents independently
of the other components. Empirical results on both Random NKQ

Landscapes and MAX-SAT provide evidence that the new APX op-
erator increases the performance of a recent state-of-the-art search
Gray-Box algorithm for pseudo-Boolean optimization.

Future work on APX includes a detailed analysis of the possi-
bility of �ipping more than one articulation point per connected
component. We have included APX in one particular algorithm
(DRILS), but the operator is independent of the algorithm and can
be included in GAs. Regarding DRILS, we can use the information
of the recombination graph and articulation points to guide the
random walk after �nding a local optimum. In particular, this guide
could be essential in plateaus, a scenario for which preliminary
theoretical results on APX provide an encouraging message.
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Conclusions
• The Variable Interaction Graph provides useful information to improve the search

• Articulation Points Partition Crossover squares the number of solutions considered by 
PX in around the same time

• APX is specially good in Unweighted MAX-SAT instances (many plateaus)

• Take home message: use Gray-Box Optimization if you can

• Plateaus exploration in MAX-SAT guided by APX

• New ways of perturbing the solution to maximize the components in (A)PX

• Look at the Variable Interaction Graph of industrial problems

Future Work
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Acknowledgements2. ELEMENTOS DE LA IDENTIDAD

2.2. Versiones de la marca Universidad de Málaga

Esta actualización del manual recoge el uso horizontal de la marca UNIVERSIDAD 
DE MÁLAGA tal y como se muestra en la imagen. También se ha corregido el uso  
negativo del escudo. En esta versión se respeta el original diseño de la imagen de 
“La Paloma”.

VERSIÓN HORIZONTAL  EN POSITIVO VERSIÓN VERTICAL EN POSITIVO

VERSIÓN HORIZONTAL  EN NEGATIVO VERSIÓN VERTICAL EN NEGATIVO
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Thanks for your attention!!!


